Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 116101    DOI: 10.1088/1674-1056/26/11/116101

Novel conductance step in carbon nanotube with wing-like zigzag graphene nanoribbons

Hong Liu(刘红)
Physics Department, Nanjing Normal University, Nanjing 210023, China
Abstract  Connecting one armchair carbon nanotube (CNT) to several zigzag graphene nanoribbons (ZGNRs) we find that the topologically-protected edge states of ZGNRs and the massless Dirac particle inherited from CNT still hold from the analysis of the band structure and the edge state. Furthermore, the lowest conductance step at the valley bottom increases proportionally with increasing the number of ZGNR wings. A novel conductance step of a peak occurs in the valley, which is two steps higher than the lowest step at the valley bottom. In addition, with increasing the number of ZGNR wings the width of the novel conductance step becomes narrow.
Keywords:  carbon nanotube      Dirac point      edge state      quantum conductance     
Received:  08 May 2017      Published:  05 November 2017
PACS:  61.46.Np (Structure of nanotubes (hollow nanowires))  
  61.48.Gh (Structure of graphene)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.63.Fg (Nanotubes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10947004) and the Government Scholarship for Overseas Studies of Jiangsu Province, China.
Corresponding Authors:  Hong Liu     E-mail:

Cite this article: 

Hong Liu(刘红) Novel conductance step in carbon nanotube with wing-like zigzag graphene nanoribbons 2017 Chin. Phys. B 26 116101

[1] Iijima S 1991 Nature 354 56
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firov A A 2005 Nature 438 197
[3] Tombros N, Jozsa C, Popinciuc M, Jonkman H T and Van Wees B J 2007 Nature 448 571
[4] Williams J R, DiCarlo L and Marcus C M 2007 Science 317 638
[5] Ezawa M 2006 Phys. Rev. B 73 045432
[6] Fujita M, Wakabayashi K, Akada K and Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920
[7] Nakada K, Fujita M, Dresselhaus G and Dresselhaus M S 1996 Phys. Rev. B 54 17954
[8] Yang L, Cohen M L and Louie S G 2008 Phys. Rev. Lett. 101 186401
[9] Wakayabashi K, Fujita M, Ajiki H and Sigrist M 1999 Phys. Rev. B 59 8271
[10] Wang Y, Yang S and Niu Q 2009 Phys. Rev. Lett. 102 096801
[11] Liu H, Hu B and Liu N 2016 Phys. Lett. A 380 3738
[12] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[13] Yang Y, Xu Z, Sheng L, Wang B G, Xing D Y and Sheng D N 2011 Phys. Rev. Lett. 107 066602
[14] Li H, Sheng L and Xing D Y 2012 Phys. Rev. Lett. 108 196806
[15] Li S 2014 Progress in Physics 34 1
[16] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[17] Knez I, Du R R and Sullivan G 2011 Phys. Rev. Lett. 107 136603
[18] Wang Z J, Weng H M, Wu Q S, Dai X and Fang Z 2013 Phys. Rev. B 88 125427
[19] Tang P, Yan B, Cao W, Wu S C, Felser C and Duan W 2014 Phys. Rev. B 89 041409(R)
[20] Murakami S 2006 Phys. Rev. Lett. 97 236805
[21] Weng H M, Dai X and Fang Z 2014 Phys. Rev. X 4 011002
[22] Wu R, Ma J Z, Nie S M, Zhao L X, Huang X, Yin J X, Fu B B, Richard P, Chen G F, Fang Z, Dai X, Weng H M, Qian T, Ding H and Pan S H 2016 Phys. Rev. X 6 021017
[23] Weng H M, Liang Y Y, Xu Q N, Yu R, Fang Z, Dai X and Kawazoe Y 2015 Phys. Rev. B 92 045108
[24] Kubo R 1957 J. Phys. Soc. Jpn. 12 570
[25] Nardelli M B 1999 Phys. Rev. B 60 7828
[26] Ferreira M S, Dargam T G, Muniz R B and Latge A 2000 Phys. Rev. B 62 16040
[27] Ferreira M S, Dargam T G, Muniz R B and Latge A 2001 Phys. Rev. B 63 245111
[28] Nardelli M B and Bernholc J 1999 Phys. Rev. B 60 16338
[1] Evidence for topological superconductivity: Topological edge states in Bi2Te3/FeTe heterostructure
Bin Guo(郭斌), Kai-Ge Shi(师凯歌), Hai-Lang Qin(秦海浪), Liang Zhou(周良), Wei-Qiang Chen(陈伟强), Fei Ye(叶飞), Jia-Wei Mei(梅佳伟), Hong-Tao He(何洪涛), Tian-Luo Pan(潘天洛), Gan Wang(王干). Chin. Phys. B, 2020, 29(9): 097403.
[2] Carbon nanotube-based nanoelectromechanical resonatoras mass biosensor
Ahmed M. Elseddawy, Adel H. Phillips, Ahmed S Bayoumi. Chin. Phys. B, 2020, 29(7): 078501.
[3] Symmetry-controlled edge states in graphene-like topological sonic crystal
Zhang-Zhao Yang(杨彰昭), Jin-Heng Chen(陈晋恒), Yao-Yin Peng(彭尧吟), Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2020, 29(10): 104302.
[4] Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration
Jianchun Ye(叶建春), Jun Li(李俊), Xiaohong Chen(陈晓红), Sumei Huang(黄素梅), Wei Ou-Yang(欧阳威). Chin. Phys. B, 2019, 28(9): 095202.
[5] Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study
Camile Rodolphe Tchenguem Kamto, Bridinette Thiodjio Sendja, Jeannot Mane Mane. Chin. Phys. B, 2019, 28(9): 093101.
[6] Neutral excitation and bulk gap of fractional quantum Hall liquids in disk geometry
Wu-Qing Yang(杨武庆), Qi Li(李骐), Lin-Peng Yang(杨林鹏), Zi-Xiang Hu(胡自翔). Chin. Phys. B, 2019, 28(6): 067303.
[7] Full filling of mesoporous carbon nanotubes by aqueous solution at room temperature
Xiao-Na Ren(任晓娜), Min Xia(夏敏), Qing-Zhi Yan(燕青芝), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2019, 28(3): 036801.
[8] Underwater acoustic metamaterial based on double Dirac cone characteristics in rectangular phononic crystals
Dong-Liang Pei(裴东亮), Tao Yang(杨洮), Meng Chen(陈猛), Heng Jiang(姜恒). Chin. Phys. B, 2019, 28(12): 124301.
[9] Coulomb-dominated oscillations in a graphene quantum Hall Fabry-Pérot interferometer
Guan-Qun Zhang(张冠群), Li Lin(林立), Hailin Peng(彭海琳), Zhongfan Liu(刘忠范), Ning Kang(康宁), Hong-Qi Xu(徐洪起). Chin. Phys. B, 2019, 28(12): 127203.
[10] Potentials of classical force fields for interactions between Na+ and carbon nanotubes
De-Yuan Li(李德远), Guo-Sheng Shi(石国升), Feng Hong(洪峰), Hai-Ping Fang(方海平). Chin. Phys. B, 2018, 27(9): 098801.
[11] Observation of 550 MHz passively harmonic mode-locked pulses at L-band in an Er-doped fiber laser using carbon nanotubes film
Qianqian Huang(黄千千), Chuanhang Zou(邹传杭), Tianxing Wang(王天行), Mohammed Al Araimi, Aleksey Rozhin, Chengbo Mou(牟成博). Chin. Phys. B, 2018, 27(9): 094210.
[12] Dependence of the solar cell performance on nanocarbon/Si heterojunctions
Shiqi Xiao(肖仕奇), Qingxia Fan(范庆霞), Xiaogang Xia(夏晓刚), Zhuojian Xiao(肖卓建), Huiliang Chen(陈辉亮), Wei Xi(席薇), Penghui Chen(陈鹏辉), Junjie Li(李俊杰), Yanchun Wang(王艳春), Huaping Liu(刘华平), Weiya Zhou(周维亚). Chin. Phys. B, 2018, 27(7): 078801.
[13] Distinct edge states and optical conductivities in the zigzag and armchair silicene nanoribbons under exchange and electric fields
Jianfei Zou(邹剑飞), Jing Kang(康静). Chin. Phys. B, 2018, 27(3): 037301.
[14] Thermal conduction of one-dimensional carbon nanomaterials and nanoarchitectures
Haifei Zhan(占海飞), Yuantong Gu(顾元通). Chin. Phys. B, 2018, 27(3): 038103.
[15] Thermal conductivity of carbon nanotube superlattices: Comparative study with defective carbon nanotubes
Kui-Kui Zhou(周魁葵), Ning Xu(徐 宁), Guo-Feng Xie(谢国锋). Chin. Phys. B, 2018, 27(2): 026501.
No Suggested Reading articles found!