Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 100506    DOI: 10.1088/1674-1056/26/10/100506
GENERAL Prev   Next  

Stochastic bounded consensus of second-order multi-agent systems in noisy environment

Hong-Wei Ren(任红卫)1,2, Fei-Qi Deng(邓飞其)2
1. School of Electronic Information, Guangdong University of Petrochemical Technology, Maoming 525000, China;
2. Systems Engineering Institute, South China University of Technology, Guangzhou 510640, China
Abstract  This paper investigates the stochastic bounded consensus of leader-following second-order multi-agent systems in a noisy environment. It is assumed that each agent received the information of its neighbors corrupted by noises and time delays. Based on the graph theory, stochastic tools, and the Lyapunov function method, we derive the sufficient conditions under which the systems would reach stochastic bounded consensus in mean square with the protocol we designed. Finally, a numerical simulation is illustrated to check the effectiveness of the proposed algorithms.
Keywords:  stochastic bounded consensus      multi-agent systems      noises      time-delays  
Received:  19 July 2017      Revised:  19 July 2017      Published:  05 October 2017
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  89.75.-k (Complex systems)  
  02.30.Ks (Delay and functional equations)  
  02.20.-a (Group theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61573156, 61273126, 61503142, 61272382, and 61573154) and the Fundamental Research Funds for the Central Universities (Grant No. x2zdD2153620).
Corresponding Authors:  Fei-Qi Deng     E-mail:

Cite this article: 

Hong-Wei Ren(任红卫), Fei-Qi Deng(邓飞其) Stochastic bounded consensus of second-order multi-agent systems in noisy environment 2017 Chin. Phys. B 26 100506

[1] Sun M, Li D D, Han D and Jia Q 2013 Chin. Phys. Lett. 30 090202
[2] Li H Y and Hu Y N 2011 Chin. Phys. Lett. 28 120508
[3] Chen L M, L ü Y Y, L C J and Ma G F 2016 Chin. Phys. B 25 128701
[4] Hu J P and Hong Y G 2007 Physica A 374 853
[5] Zhang X, Wang J H, Yang D D and Xu Y 2017 Chin. Phys. B 26 070501
[6] Wu S S, Wu Z H, Peng L and Xie L B 2017 Chin. Phys. B 26 018903
[7] Cao J, Wu Z H and Peng L 2017 Chin. Phys. B 25 058902
[8] Hou L L, Lao S Y, Xiao Y D and Bai L 2015 Acta Phys. Sin. 64 188901(in Chinese)
[9] Huang M Y and Manton J H 2009 SIAM J. Control Optim. 48 134
[10] Li T and Zhang J F 2009 Automatica 45 1929
[11] Ai X D, Song S J and You K Y 2016 Automatica 68 329
[12] Wang R S, Gao L X, Chen W H and Dai D M 2016 Chin. Phys. B 25 100202
[13] Li L and Fang H J 2013 Chin. Phys. B 22 110505
[14] Xu Y H, Lu Y J, Zhou W N and Fang J A 2016 Nonlinear Dyn. 84 661
[15] Xu Y H, Zhang J C, Zhou W N and Tong D B 2017 Discrete Dynamics in Nature and Society 2017 1
[16] Zhou F, Wang Z J and Fan N J 2015 Chin. Phys. B 24 020203
[17] Sun F L, Guan Z H, Ding L and Wang Y W 2013 Int. J. Sys. Sci. 44 995
[18] Song L, Huang D, Nguang S K and Fu S 2016 Int. J. Control Autom. Sys. 14 69
[19] Boyd S, Ghaoui L E, Feron E and Balakrishnan V 1994 Linear matrix inequalities in system and control theory (Philadelphia:Society for Industrial and Applied Mathematics)
[20] Xu Y H, Zhou W N, Fang J A, Xie C R and Tong D B 2016 Neurocomputing 173 1356
[1] Group consensus of multi-agent systems subjected to cyber-attacks
Hai-Yun Gao(高海云), Ai-Hua Hu(胡爱花), Wan-Qiang Shen(沈莞蔷), Zheng-Xian Jiang(江正仙). Chin. Phys. B, 2019, 28(6): 060501.
[2] Successive lag cluster consensus on multi-agent systems via delay-dependent impulsive control
Xiao-Fen Qiu(邱小芬), Yin-Xing Zhang(张银星), Ke-Zan Li(李科赞). Chin. Phys. B, 2019, 28(5): 050501.
[3] Mean-square composite-rotating consensus of second-order systems with communication noises
Li-po Mo(莫立坡), Shao-yan Guo(郭少岩), Yong-guang Yu(于永光). Chin. Phys. B, 2018, 27(7): 070504.
[4] Time-varying formation for general linear multi-agent systems via distributed event-triggered control under switching topologies
Jin-Huan Wang(王金环), Yu-Ling Xu(许玉玲), Jian Zhang(张建), De-Dong Yang(杨德东). Chin. Phys. B, 2018, 27(4): 040504.
[5] Effects of intrinsic and extrinsic noises on transposons kinetics
Alssadig A M Yousif, Lulu Lu(鹿露露), Mengyan Ge(葛梦炎), Ying Xu(徐莹), Ya Jia(贾亚). Chin. Phys. B, 2018, 27(3): 030501.
[6] Leader-following consensus of discrete-time fractional-order multi-agent systems
Erfan Shahamatkhah, Mohammad Tabatabaei. Chin. Phys. B, 2018, 27(1): 010701.
[7] Current transport and mass separation for an asymmetric fluctuation system with correlated noises
Jie Wang(王杰), Li-Juan Ning(宁丽娟). Chin. Phys. B, 2018, 27(1): 010501.
[8] Tracking consensus for nonlinear heterogeneous multi-agent systems subject to unknown disturbances via sliding mode control
Xiang Zhang(张翔), Jin-Huan Wang(王金环), De-Dong Yang(杨德东), Yong Xu(徐勇). Chin. Phys. B, 2017, 26(7): 070501.
[9] Cooperative impulsive formation control for networked uncertain Euler-Lagrange systems with communication delays
Liang-ming Chen(陈亮名), Chuan-jiang Li(李传江), Yan-chao Sun(孙延超), Guang-fu Ma(马广富). Chin. Phys. B, 2017, 26(6): 068703.
[10] Asymptotic bounded consensus tracking of double-integratormulti-agent systems with bounded-jerk target based onsampled-data without velocity measurements
Shuang-Shuang Wu(吴爽爽), Zhi-Hai Wu(吴治海), Li Peng(彭力), Lin-Bo Xie(谢林柏). Chin. Phys. B, 2017, 26(1): 018903.
[11] Distributed event-triggered consensus tracking of second-order multi-agent systems with a virtual leader
Jie Cao(曹劼), Zhi-Hai Wu(吴治海), Li Peng(彭力). Chin. Phys. B, 2016, 25(5): 058902.
[12] Consensus for second-order multi-agent systems with position sampled data
Rusheng Wang(王如生), Lixin Gao(高利新), Wenhai Chen(陈文海), Dameng Dai(戴大蒙). Chin. Phys. B, 2016, 25(10): 100202.
[13] Distributed H control of multi-agent systems with directed networks
Liu Wei, Liu Ai-Li, Zhou Shao-Lei. Chin. Phys. B, 2015, 24(9): 090208.
[14] Containment consensus with measurement noises and time-varying communication delays
Zhou Feng, Wang Zheng-Jie, Fan Ning-Jun. Chin. Phys. B, 2015, 24(2): 020203.
[15] A novel model and behavior analysis for a swarm of multi-agent systems with finite velocity
Wang Liang-Shun, Wu Zhi-Hai. Chin. Phys. B, 2014, 23(9): 098901.
No Suggested Reading articles found!