Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 018504    DOI: 10.1088/1674-1056/26/1/018504
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Heteromaterial-gate line tunnel field-effect transistor based on Si/Ge heterojunction

Shuqin Zhang(张书琴), Renrong Liang(梁仁荣), Jing Wang(王敬), Zhen Tan(谭桢), Jun Xu(许军)
Tsinghua National Laboratory for Information Science and Technology Institute of Microelectronics, Tsinghua University, Beijing 100084, China
Abstract  A Si/Ge heterojunction line tunnel field-effect transistor (LTFET) with a symmetric heteromaterial gate is proposed. Compared to single-material-gate LTFETs, the heteromaterial gate LTFET shows an off-state leakage current that is three orders of magnitude lower, and steeper subthreshold characteristics, without degradation in the on-state current. We reveal that these improvements are due to the induced local potential barrier, which arises from the energy-band profile modulation effect. Based on this novel structure, the impacts of the physical parameters of the gap region between the pocket and the drain, including the work-function mismatch between the pocket gate and the gap gate, the type of dopant, and the doping concentration, on the device performance are investigated. Simulation and theoretical calculation results indicate that the gap gate material and n-type doping level in the gap region should be optimized simultaneously to make this region fully depleted for further suppression of the off-state leakage current.
Keywords:  line tunnel field-effect transistor      heteromaterial gate      fully depleted  
Received:  22 June 2016      Revised:  21 October 2016      Accepted manuscript online: 
PACS:  85.30.-z (Semiconductor devices)  
  85.30.Mn (Junction breakdown and tunneling devices (including resonance tunneling devices))  
  85.35.-p (Nanoelectronic devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61306105), the National Science and Technology Major Project of China (Grant No. 2011ZX02708-002), the Tsinghua University Initiative Scientific Research Program and the Tsinghua National Laboratory for Information Science and Technology (TNList) Cross-discipline Foundation of China.
Corresponding Authors:  Renrong Liang     E-mail:  liangrr@mail.tsinghua.edu.cn

Cite this article: 

Shuqin Zhang(张书琴), Renrong Liang(梁仁荣), Jing Wang(王敬), Zhen Tan(谭桢), Jun Xu(许军) Heteromaterial-gate line tunnel field-effect transistor based on Si/Ge heterojunction 2017 Chin. Phys. B 26 018504

[1] He J, Bian W, Tao Y D, Liu F, Song Y and Zhang X 2006 Chin. Phys. Lett. 23 3373
[2] Theis T N and Solomon P M 2010 Science 327 1600
[3] Choi W Y, Park B G, Lee J D and Liu T J K 2007 IEEE Electron Device Lett. 28 743
[4] Verhulst A S, Leonelli D, Rooyackers R and Groeseneken G 2011 J. Appl. Phys. 110 024510
[5] Wang P F, Lin X, Liu L, Sun Q Q, Zhou P, Liu X Y, Liu W, Gong Y and Zhang D W 2013 Science 341 640
[6] Wang C, Wu C L, Wang J X, Huang Q Q and Huang R 2015 Sci. China Inform. Sci. 58 022402
[7] Hähnel D, Oehme M, Sarlija M, Karmous A, Schmid M, Werner J, Kirfel O, Fischer I and Schulze J 2011 Solid-State Electron. 62 132
[8] Zhou G, Lu Y, Li R, Zhang Q, Hwang W S, Liu Q, Vasen T, Chen C, Zhu H, Kuo J M, Koswatta S, Kosel T, Wistey M, Fay P, Seabaugh A and Xing H 2011 IEEE Electron Device Lett. 32 1516
[9] Kao K H, Verhulst A S, Vandenberghe W G, Sorée B, Magnus W, Leonelli D, Groeseneken G and Meyer K D 2012 IEEE Trans. Electron Devices 59 2070
[10] Ganapathi K and Salahuddin S 2011 IEEE Electron Device Lett. 32 689
[11] Li R, Lu Y, Zhou G, Liu Q, Chae S D, Vasen T, Hwang W S, Zhang Q, Fay P, Kosel T, Wistey M, Xing H and Seabaugh A 2012 IEEE Electron Device Lett. 33 363
[12] Jiang Z, Zhuang Y Q, Li C, Wang P and Liu Y Q 2016 Chin. Phys. B 25 027701
[13] Walke A M, Verhulst A S, Vandooren A, Verreck D, Simoen E, Rao V R, Groeseneken G, Collaert N and Thean A V Y 2013 IEEE Trans. Electron Devices 60 4057
[14] Mookerjea S, Mohata D, Krishnan R, Singh J, Vallett A, Ali A, Mayer T, Narayanan V, Schlom1 D, Liu A and Datta S 2009 IEEE International Electron Device Meeting, December 7-9, 2009, Baltimore, MD, United States, p. 13.7.1
[15] Liu Y, Wang H J, Yan J and Han G Q 2013 Chin. Phys. Lett. 30 088502
[16] Kazazis D, Jannaty P, Zaslavsky A, Royer C L, Tabone C, Clavelier L and Cristoloveanu S 2009 Appl. Phys. Lett. 94 263508
[17] Qiu Y X, Wang R S, Huang Q Q and Huang R 2014 J. Appl. Phys. 115 234505
[18] Kim S H, Kam H, Hu C and Liu T J K 2009 Symposium on VLSI Technology, June 16-18, 2009, Kyoto, Japan, p. 178
[19] Liu Y, He J, Chan M, Du C X, Ye Y, Zhao W, Wu W, Deng W L and Wang W P 2014 Chin. Phys. B 23 097102
[20] Zhan Z, Huang Q Q, Huang R, Jiang W Z and Wang Y Y 2013 Science China Information Scence 56 072401
[21] Huang R, Huang Q Q, Chen S W, Wu C L, Wang J X, An X and Wang Y Y 2014 Nanotechnology 25 505201
[22] Fischer I A, Bakibillah A S M, Golve M, Hähnel D, Isemann H, Kottantharayil A, Oehme M and Schulze J 2013 IEEE Electron Device Lett. 34 154
[23] Blaeser S, Glass S, Schulte-Braucks C, Narimani K, Driesch N, Wirths S, Tiedemann A T, Trellenkamp S, Buca D, Zhao Q T and Mantl S 2015 IEEE International Electron Devices Meeting, Decemeber 7-9, 2015, Washington, USA, p. 22.3.1
[24] Brouzet V, Salem B, Periwal P, Alcotte R, Chouchane F, Bassani F, Baron T and Ghibaudo G 2016 Solid-State Electron. 118 26
[25] Zhao Q T, Richter S, Schulte-Braucks C, Knoll L, Blaeser S, Luong G V, Trellenkamp S, Schafer A, Tiedemann A, Hartmann J M, Bourdelle K and Mantl S 2015 IEEE J. Electron Devices Soc. 3 103
[26] Kim M, Wakabayashi Y K, Yokoyama M, Nakane R, Takenaka M and Takagi S 2015 IEEE Trans. Electron Devices 62 9
[27] Ghosh S, Koley K, Saha S K and Sarkar 2016 IEEE Trans. Electron Devices 63 3869
[28] Zhou G, Li R, Vasen T, Qi M, Chae S, Lu Y, Zhang Q, Zhu H, Kuo J M, Kosel T, Wistey M, Fay P, Seabaugh A and Xing H 2012 IEEE International Electron Devices Meeting, December 10-13, 2012 San Francisco, CA, USA, p. 32.6.1
[29] Bhuwalka K K, Sedlmaier S, Ludsteck A K, Tolksdorf C, Schulze J and Eisele I 2004 IEEE Electron Device Lett. 51 279
[30] Zhou G, Lu Y, Li R, Zhang Q, Hwang W S, Liu Q, Vasen T, Chen C, Zhu H, Kuo J M, Kosel T, Wistey M, Fay P, Seabaugh A and Xing H 2012 IEEE Electron Device Lett. 33 782
[31] Cui N, Liang R and Xu J 2011 Appl. Phys. Lett. 98 142105
[32] Saurabh S and Kumar M J 2011 IEEE Trans. Electron Devices 58 404
[33] Sentaurus device user guide. 2013 Version Y-2013.03
[34] Colinge J P, Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I, Razavi P, O'Neill B, Blake A, White M, Kelleher A M, McCarthy B and Murphy R 2010 Nat. Nanotechnol. 5 225
[35] Kim S H, Agarwal S, Jacobson Z A, Matheu P, Hu C and Liu T J K 2010 IEEE Electron Device Lett. 31 1107
[36] Schlosser M, Bhuwalka K K, Sauter M, Zibauer T, Sulima T and Eisele I 2009 IEEE Trans. Electron Devices 56 100
[37] Sun C, Liang R, Liu L, Wang J and Xu J 2015 Appl. Phys. Lett. 107 132105
[38] Lee C W, Ferain I, Afzalian A, Yan R, Akhavan N D, Razavi P and Colinge J P 2010 Solid-State Electron. 54 97
[39] Choi S J, Moon D I, Kim S, Duarte J P and Choi Y K 2010 IEEE Electron Device Lett. 32 152
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[3] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[4] A single dual-mode gas sensor for early safety warning of Li-ion batteries: Micro-scale Li dendrite and electrolyte leakage
Wenjun Yan(闫文君), Zhishen Jin(金志燊), Zhengyang Lin(林政扬), Shiyu Zhou(周诗瑜), Yonghai Du(杜永海), Yulong Chen(陈宇龙), and Houpan Zhou(周后盘). Chin. Phys. B, 2022, 31(11): 110704.
[5] Recent advances in two-dimensional layered and non-layered materials hybrid heterostructures
Haixin Ma(马海鑫), Yanhui Xing(邢艳辉), Boyao Cui(崔博垚), Jun Han(韩军), Binghui Wang(王冰辉), and Zhongming Zeng(曾中明). Chin. Phys. B, 2022, 31(10): 108502.
[6] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[7] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[8] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[9] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[10] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[11] A 4H-SiC merged P-I-N Schottky with floating back-to-back diode
Wei-Zhong Chen(陈伟中), Hai-Feng Qin(秦海峰), Feng Xu(许峰), Li-Xiang Wang(王礼祥), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(2): 028503.
[12] Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology
Yan-Fu Wang(王彦富), Bo Wang(王博), Rui-Ze Feng(封瑞泽), Zhi-Hang Tong(童志航), Tong Liu(刘桐), Peng Ding(丁芃), Yong-Bo Su(苏永波), Jing-Tao Zhou(周静涛), Feng Yang(杨枫), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018502.
[13] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[14] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[15] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
No Suggested Reading articles found!