Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 017302    DOI: 10.1088/1674-1056/26/1/017302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Diffraction properties of binary graphene sheet arrays

Yang Fan(樊洋), Cong Chen(陈聪), Ding-Guo Li(李定国)
College of Science, Naval University of Engineering, Wuhan 430033, China
Abstract  We theoretically and numerically investigate the diffraction properties of surface plasmon polariton (SPP) in binary graphene sheet arrays. The single SPP band splits into two minibands by alternatively arranging the graphene waveguides with two different chemical potentials. Numerical simulations show that SPP beams in the array split into two different paths due to the different diffraction relation.
Keywords:  surface plasmons      waveguides      graphene  
Received:  20 July 2016      Revised:  11 October 2016      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.82.Et (Waveguides, couplers, and arrays)  
  81.05.ue (Graphene)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51109215 and 11604388) and the Natural Science Foundation of Hubei Province, China (Grant No. 2015CFC869).
Corresponding Authors:  Yang Fan     E-mail:  ericfan626@gmail.com

Cite this article: 

Yang Fan(樊洋), Cong Chen(陈聪), Ding-Guo Li(李定国) Diffraction properties of binary graphene sheet arrays 2017 Chin. Phys. B 26 017302

[1] Christodoulides D N, Lederer F and Silberberg Y 2004 Nature 424 817
[2] Eisenberg H S, Silberberg Y, Morandotti R and Aitchison J S 2000 Phys. Rev. Lett. 85 1863
[3] Longhi S 2006 Opt. Lett. 31 1857
[4] Kanshu A, Rüter C E, Kip D, Shandarov V, Beličev P P, Ilić I and Stepić M 2012 Opt. Lett. 37 1253
[5] Wang Z, Wang B, Wang K, Long H and Lu P 2016 Opt. Lett. 41 3619
[6] Vakil A and Engheta N 2011 Science 332 1291
[7] Chen P Y and Alú A 2011 ACS Nano 5 5855
[8] Javier García de Abajo F 2014 ACS Photonics 1 135
[9] Du L L, Li Q, Li S X, Hu F R, Xiong X M, Li Y F, Zhang W T and Han J G 2014 Chin. Phys. B 25 027301
[10] Ke S, Wang B, Huang H, Long H, Wang K and Lu P 2015 Opt. Express 23 8888
[11] Yeh P, Yariv A and Hong C S 1977 J. Opt. Soc. Am. 67 423
[12] Wang F, Qin C, Wang B, Ke S, Long H, Wang K and Lu P 2015 Opt. Express 23 31136
[13] Wang F, Qin C, Wang B, Ke S, Long H, Wang K and Lu P 2017 IEEE J. Sel. Top. Quant. Electron. 23 4600105
[14] Hanson G W 2008 J. Appl. Phys. 104 084314
[15] Gan C H 2012 Appl. Phys. Lett. 101 111609
[16] Wang B, Zhang X, García-Vidal F J, Yuan X and Teng J 2012 Phys. Rev. Lett. 109 073901
[17] Sukhorukov A A and Kivshar Y S 2002 Opt. Lett. 27 2112
[18] Christodoulides D N and Joseph R I 1988 Opt. Lett. 13 794
[19] Fan Y, Wang B, Wang K, Long H and Lu P 2014 Opt. Lett. 39 3371
[20] Fan Y, Wang B, Huang H, Wang K, Long H and Lu P 2014 Opt. Lett. 39 6827
[1] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[2] Graphene-tuned threshold gain to achieve optical pulling force on microparticle
Hong-Li Chen(陈鸿莉) and Yang Huang(黄杨). Chin. Phys. B, 2021, 30(6): 064205.
[3] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[4] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[5] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[6] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[7] Super-strong interactions between multivalent anions and graphene
Xing Liu(刘星) and Guosheng Shi(石国升). Chin. Phys. B, 2021, 30(4): 046801.
[8] Intercalation of germanium oxide beneath large-area and high-quality epitaxial graphene on Ir(111) substrate
Xueyan Wang(王雪艳), Hui Guo(郭辉), Jianchen Lu(卢建臣), Hongliang Lu(路红亮), Xiao Lin(林晓), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(4): 048102.
[9] Quantum plasmon enhanced nonlinear wave mixing in graphene nanoflakes
Hanying Deng(邓寒英), Changming Huang(黄长明), Yingji He(何影记), and Fangwei Ye(叶芳伟). Chin. Phys. B, 2021, 30(4): 044213.
[10] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[11] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[12] Modulation and enhancement of photonic spin Hall effect with graphene in broadband regions
Peng Dong(董鹏), Gaojun Wang(王高俊), and Jie Cheng(程杰). Chin. Phys. B, 2021, 30(3): 034202.
[13] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[14] Optical conductivity of twisted bilayer graphene near the magic angle
Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言). Chin. Phys. B, 2021, 30(1): 017303.
[15] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
No Suggested Reading articles found!