Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 098402    DOI: 10.1088/1674-1056/25/9/098402
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Non-ionizing energy loss calculations for modeling electron-induced degradation of Cu(In, Ga)Se2 thin-film solar cells

Ming Lu(鲁明)1, Jing Xu(徐晶)1, Jian-Wei Huang(黄建微)2
1. Department of Physics, Yantai University, Yantai 264005, China;
2. National Institute of Metrology, Beijing 100013, China
Abstract  The lowest energies which make Cu, In, Ga, and Se atoms composing Cu(In, Ga)Se2 (CIGS) material displaced from their lattice sites are evaluated, respectively. The non-ionizing energy loss (NIEL) for electron in CIGS material is calculated analytically using the Mott differential cross section. The relation of the introduction rate (k) of the recombination centers to NIEL is modified, then the values of k at different electron energies are calculated. Degradation modeling of CIGS thin-film solar cells irradiated with various-energy electrons is performed according to the characterization of solar cells and the recombination centers. The validity of the modeling approach is verified by comparison with the experimental data.
Keywords:  Cu(In, Ga)Se2 solar cells      non-ionizing energy loss      electron irradiation  
Received:  20 April 2016      Revised:  11 May 2016      Accepted manuscript online: 
PACS:  84.60.Jt (Photoelectric conversion)  
  61.82.Fk (Semiconductors)  
  61.80.Jh (Ion radiation effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11547151).
Corresponding Authors:  Ming Lu     E-mail:  lum@ytu.edu.cn

Cite this article: 

Ming Lu(鲁明), Jing Xu(徐晶), Jian-Wei Huang(黄建微) Non-ionizing energy loss calculations for modeling electron-induced degradation of Cu(In, Ga)Se2 thin-film solar cells 2016 Chin. Phys. B 25 098402

[1] Green M A, Emery K, Hishikawa Y, Warta W and Dunlop E D 2016 Prog. Photovolt: Res. Appl. 24 3
[2] Zarei H and Malekfar R 2016 Chin. Phys. B 25 027103
[3] Gao X, Feng Z Z, Cui X Y, Yang S S and Zhang L 2014 IEEE Trans. Nucl. Sci. 61 1838
[4] Liu J Y, Song P, Wang F and Wang Y 2015 Chin. Phys. B 24 097801
[5] Jasenek A, Rau U, Weinert K, Schock H W and Werner J H 2003 Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, May 11-18, 2003, Osaka, Japan, p. 593
[6] Imaizumi M, Sumita T, Kawakita S, Aoyama K, Anzawa O, Aburaya T, Hisamatsu T and Matsuda S 2005 Prog. Photovolt: Res. Appl. 13 93
[7] Lu M, Wang R, Yang K and Yi T C 2013 Nucl. Instrum. Methods Phys. Res. B 312 137
[8] Koo B, Lee J H, Shin D, Ahn B T and Shin B 2016 Thin Solid Films 603 134
[9] Zheng Y, Yi T C, Xiao P F, Tang J and Wang R 2016 Chin. Phys. Lett. 33 056102
[10] Yi T C, Xiao P F, Zheng Y, Tang J and Wang R 2016 Nucl. Instrum. Methods Phys. Res. B 370 59
[11] Makham S, Zazoui M, Sun G C and Bourgoin J C 2005 Semicond. Sci. Technol. 20 699
[12] Messenger S R, Burke E A, Summers G P, Xapsos M A, Walters R J, Jackson E M and Weaver B D 1999 IEEE Trans. Nucl. Sci. 46 1595
[13] Kosyachenko L A, Mathew X, Paulson P D, Lytvynenko V Y and Maslyanchuk O L 2014 Sol. Energy Mater. Sol. Cells 130 291
[14] Chirila A, Buecheler S, Pianezzi F, Bloesch P, Gretener C, Uhl A R, Fella C, Kranz L, Perrenoud J, Seyrling S, Verma R, Nishiwaki S, Romanyuk Y E, Bilger G and Tiwari A N 2011 Nat. Mater. 10 857
[15] Anspaugh B E 1996 GaAs Solar Cell Radiation Handbook (California: Jet Propulsion Laboratory Publication) (Chapter 2) pp. 1-20
[16] Kawakita S, Imaizumi M, Ishizuka S, Niki S, Okuda S and Kusawake H 2013 Thin Solid Films 535 353
[17] Jun I, Kim W and Evans R 2009 IEEE Trans. Nucl. Sci. 56 3229
[18] Jasenek A and Rau U 2001 J. Appl. Phys. 90 650
[19] Messenger S R, Summers G P, Burke E A, Walters R J and Xapsos M A 2001 Prog. Photovolt: Res. Appl. 9 103
[20] Metzger W K and Gloeckler M 2005 J. Appl. Phys. 98 063701
[1] Improved electrical properties of NO-nitrided SiC/SiO2 interface after electron irradiation
Ji-Long Hao(郝继龙), Yun Bai(白云), Xin-Yu Liu(刘新宇), Cheng-Zhan Li(李诚瞻), Yi-Dan Tang(汤益丹), Hong Chen(陈宏), Xiao-Li Tian(田晓丽), Jiang Lu(陆江), Sheng-Kai Wang(王盛凯). Chin. Phys. B, 2020, 29(9): 097301.
[2] A synthetic semi-empirical physical model of secondary electron yield of metals under E-beam irradiation
Guo-Bao Feng(封国宝), Wan-Zhao Cui(崔万照), Na Zhang(张娜), Meng Cao(曹猛), Chun-Liang Liu(刘纯亮). Chin. Phys. B, 2017, 26(9): 097901.
[3] Photocarrier radiometry for noncontact evaluation of space monocrystalline silicon solar cell under low-energy electron irradiation
Liu Jun-Yan, Song Peng, Wang Fei, Wang Yang. Chin. Phys. B, 2015, 24(9): 097801.
[4] Visible to deep ultraviolet range optical absorption of electron irradiated borosilicate glass
Wang Tie-Shan, Duan Bing-Huang, Tian Feng, Peng Hai-Bo, Chen Liang, Zhang Li-Min, Yuan Wei. Chin. Phys. B, 2015, 24(7): 076102.
[5] Characteristics of charge and discharge of PMMA samples due to electron irradiation
Feng Guo-Bao, Wang Fang, Hu Tian-Cun, Cao Meng. Chin. Phys. B, 2015, 24(11): 117901.
[6] Electron irradiation-induced change of structure and damage mechanisms in multi-walled carbon nanotubes
Yang Jian-Qun, Li Xing-Ji, Liu Chao-Ming, Ma Guo-Liang, Gao Feng. Chin. Phys. B, 2015, 24(11): 116103.
[7] XPS and Raman studies of electron irradiated sodium silicate glass
Chen Liang, Wang Tie-Shan, Zhang Gen-Fa, Yang Kun-Jie, Peng Hai-Bo, Zhang Li-Min. Chin. Phys. B, 2013, 22(12): 126101.
[8] Charging dynamics of polymer due to electron irradiation: A simultaneous scattering-transport model and preliminary results
Cao Meng, Wang Fang, Liu Jing, Zhang Hai-Bo. Chin. Phys. B, 2012, 21(12): 127901.
[9] Infrared studies of oxygen-related complexes in electron-irradiated Cz-Si
Chen Gui-Feng, Yan Wen-Bo, Chen Hong-Jian, Cui Hui-Ying, Li Yang-Xian. Chin. Phys. B, 2009, 18(7): 2988-2991.
No Suggested Reading articles found!