Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 097501    DOI: 10.1088/1674-1056/25/9/097501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Manipulating magnetic anisotropies of Co/MgO(001) ultrathin films via oblique deposition

Syed Sheraz Ahmad, Wei He(何为), Jin Tang(汤进), Yong Sheng Zhang(张永圣), Bo Hu(胡泊), Jun Ye(叶军), Qeemat Gul, Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华)
State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

We present a systematic investigation of magnetic anisotropy induced by oblique deposition of Co thin films on MgO (001) substrates by molecular beam epitaxy at different deposition angles, i.e., 0°, 30°, 45°, 60°, and 75° with respect to the surface normal. Low energy electron diffraction (LEED), surface magneto-optical Kerr effect (SMOKE), and anisotropic magnetoresistance (AMR) setups were employed to investigate the magnetic properties of cobalt films. The values of in-plane uniaxial magnetic anisotropy (UMA) constant Ku and four-fold magnetocrystalline anisotropy constant K1 were derived from magnetic torque curves on the base of AMR results. It was found that the value of Ku increases with increasing deposition angle with respect to the surface normal, while the value of K1 remains almost constant for all the samples. Furthermore, by using MOKE results, the Ku values of the films deposited obliquely were also derived from the magnetization curves along hard axis. The results of AMR method were then compared with that of hard axis fitting method (coherent rotation) and found that both methods have almost identical values of UMA constant for each sample.

Keywords:  magnetic anisotropy      oblique deposition      cobalt ultrathin film      anisotropic magnetoresistance  
Received:  23 May 2016      Revised:  27 June 2016      Accepted manuscript online: 
PACS:  75.30.Gw (Magnetic anisotropy)  
  75.60.Jk (Magnetization reversal mechanisms)  
  75.70.Ak (Magnetic properties of monolayers and thin films)  
Fund: 

Project supported by the Chinese Academy of Sciences-The World Academy of Sciences (CAS-TWAS) Fellowship Program, the National Basic Research Program of China (Grant Nos. 2015CB921403 and 2012CB933102), and the National Natural Science Foundation of China (Grant Nos. 51427801, 11374350, and 11274361).

Corresponding Authors:  Zhao-Hua Cheng     E-mail:  zhcheng@iphy.ac.cn

Cite this article: 

Syed Sheraz Ahmad, Wei He(何为), Jin Tang(汤进), Yong Sheng Zhang(张永圣), Bo Hu(胡泊), Jun Ye(叶军), Qeemat Gul, Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华) Manipulating magnetic anisotropies of Co/MgO(001) ultrathin films via oblique deposition 2016 Chin. Phys. B 25 097501

[1] Zhao H W, Wu Y Z, Won C and Qiu Z Q 2004 J. Appl. Phys. 95 7300
[2] Fang Y P, He W, Liu H L, Zhan Q F, Du H F, Wu Q, Yang H T, Zhang X Q and Cheng Z H 2010 Appl. Phys. Lett. 97 22507
[3] Chowdhury N and Bedanta S 2014 AIP Adv. 4 027104
[4] Smith D O, Cohen M S and Weiss J P 1960 J. Appl. Phys. 31 1755
[5] Bedanta S, Eimuller T, Kleemann W, Rhensius J, Stromberg F, Amaladass E, Cardoso S and Freitas P P 2007 Phys. Rev. Lett. 98 176601
[6] Pires M J M, Cotta A A C Martins M D, Silva A M A and Macedo W A A 2011 J. Magn. Magn. Mater. 323 789
[7] Takahashi M and Kono T 1960 J. Phys. Soc. Jpn. 15 936
[8] Knorr T G and Hoffman R W 1959 Phys. Rev. 113 1039
[9] Hoshi Y, Suzuki E and Naoe M 1996 J. Appl. Phys. 79 4945
[10] Madurga V, Vergara J and Favieres C 2004 J. Magn. Magn. Mater. 272-276 1681
[11] Rezende S M, Moura J A S, De Aguiar F M and Schreiner W H 1994 Phys. Rev. B 49 15105
[12] Yaegashi S, Kurihara T and Satoh K 1997 J. Appl. Phys. 81 6303
[13] Mattheis R and Quednau G 1999 J. Magn. Magn. Mater. 205 143
[14] Garreau G, Hajjar S, Bubendorff J L, Pirri C, Berling D, Mehdaoui A, Stephan R, Wetzel P, Zabrocki S, Gewinner G, Boukari S and Beaurepaire E 2005 Phys. Rev. B 71 094430
[15] McGuire T R and Potter R I 1975 IEEE Trans. Mag. 11 1018
[16] Dahlberg E D, Riggs K and Prinz G A 1988 J. Appl. Phys. 63 4270
[17] Miller B H and Dahlberg E D 1996 Appl. Phys. Lett. 69 3932
[18] Krivorotov I N, Leighton C, Nogues J, Schuller I K and Dahlberg E D 2002 Phys. Rev. B 65 100402
[19] Cao W N, Li J, Chen G, Zhu J, Hu C R and Wu Y Z 2011 Appl. Phys. Lett. 98 262506
[20] Li J, Jin E, Son H, Tan A, Cao W N, Hwang C and Qiu Z Q 2012 Rev. Sci. Instrum. 83 033906
[21] Ye J, He W, Wu Q, Hu B, Tang J, Zhang X Q, Chen Z Y and Cheng Z H 2014 Appl. Phys. Lett. 105 102406
[1] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[2] Magnetic anisotropy in 5d transition metal-porphyrin molecules
Yan-Wen Zhang(张岩文), Gui-Xian Ge(葛桂贤), Hai-Bin Sun(孙海斌), Jue-Ming Yang(杨觉明), Hong-Xia Yan(闫红霞), Long Zhou(周龙), Jian-Guo Wan(万建国), and Guang-Hou Wang(王广厚). Chin. Phys. B, 2021, 30(4): 047501.
[3] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[4] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[5] Tuning magnetic anisotropy by interfacial engineering in La2/3Sr1/3Co1-xMnxO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3Co1-xMnxO2.5+δ trilayers
Hai-Lin Huang(黄海林), Liang Zhu(朱亮), Hui Zhang(张慧), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Xiaobing Chen(陈晓冰), Yuan-Sha Chen(陈沅沙), Jian-Wang Cai(蔡建旺), Xue-Dong Bai(白雪冬), Feng-Xia Hu(胡凤霞), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 097402.
[6] Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates
Xin Wen(闻馨), Rui Wu(吴锐), Wen-Yun Yang(杨文云), Chang-Sheng Wang(王常生), Shun-Quan Liu(刘顺荃), Jing-Zhi Han(韩景智), Jin-Bo Yang(杨金波). Chin. Phys. B, 2020, 29(9): 098503.
[7] Magnetoelastic coupling effect of Fe10Co90 films grown on different flexible substrates
Jiapeng Zhao(赵佳鹏), Qinhuang Guo(郭勤皇), Huizhong Yin(尹慧中), Jintang Zou(邹锦堂), Zhenjie Zhao(赵振杰), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2020, 29(11): 117501.
[8] Surface states modulated exchange interaction in Bi2Se3/thulium iron garnet heterostructures
Hai-Bin Shi(石海滨), Li-Qin Yan(闫丽琴), Yang-Tao Su(苏仰涛), Li Wang(王力), Xin-Yu Cao(曹昕宇), Lin-Zhu Bi(毕林竹), Yang Meng(孟洋), Yang Sun(孙阳), and Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2020, 29(11): 117302.
[9] Giant anisotropy of magnetic damping and significant in-plane uniaxial magnetic anisotropy in amorphous Co40Fe40B20 films on GaAs(001)
Ji Wang(王佶), Hong-Qing Tu(涂宏庆), Jian Liang(梁健), Ya Zhai(翟亚), Ruo-Bai Liu(刘若柏), Yuan Yuan(袁源), Lin-Ao Huang(黄林傲), Tian-Yu Liu(刘天宇), Bo Liu(刘波)†, Hao Meng(孟皓), Biao You(游彪), Wei Zhang(张维), Yong-Bing Xu(徐永兵), and Jun Du(杜军)‡. Chin. Phys. B, 2020, 29(10): 107503.
[10] Thickness-dependent magnetic anisotropy in obliquely deposited Fe(001)/Pd thin film bilayers probed by VNA-FMR
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), Zong-Kai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2019, 28(7): 077502.
[11] Dependence of switching process on the perpendicular magnetic anisotropy constant in P-MTJ
Mao-Sen Yang(杨茂森), Liang Fang(方粮), Ya-Qing Chi(池雅庆). Chin. Phys. B, 2018, 27(9): 098504.
[12] Thickness dependent manipulation of uniaxial magnetic anisotropy in Fe-thin films by oblique deposition
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), ZongKai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2018, 27(9): 097504.
[13] Large tunable FMR frequency shift by magnetoelectric coupling in oblique-sputtered Fe52.5Co22.5B25.0/PZN-PT multiferroic heterostructure
Zhi-Peng Shi(时志鹏), Xiao-Min Liu(刘晓敏), Shan-Dong Li(李山东). Chin. Phys. B, 2017, 26(9): 097601.
[14] Diverse features of magnetization curves of uniaxial crystals: A simulation study
Hala A. Sobh, Samy H. Aly. Chin. Phys. B, 2017, 26(1): 017503.
[15] Influence of Tb on easy magnetization direction and magnetostriction of ferromagnetic Laves phase GdFe2 compounds
Adil Murtaza, Sen Yang(杨森), Chao Zhou(周超), Xiaoping Song(宋晓平). Chin. Phys. B, 2016, 25(9): 096107.
No Suggested Reading articles found!