Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 095204    DOI: 10.1088/1674-1056/25/9/095204
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Conditions for laser-induced plasma to effectively remove nano-particles on silicon surfaces

Jinghua Han(韩敬华)1, Li Luo(罗莉)1,2, Yubo Zhang(张玉波)3, Ruifeng Hu(胡锐峰)1, Guoying Feng(冯国英)1
1. College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China;
2. College of Optoelectronic technology, Chengdu University of Information Technology, Chengdu 610225, China;
3. Sichuan Engineering Technical College, Deyang 618000, China
Abstract  Particles can be removed from a silicon surface by means of irradiation and a laser plasma shock wave. The particles and silicon are heated by the irradiation and they will expand differently due to their different expansion coefficients, making the particles easier to be removed. Laser plasma can ionize and even vaporize particles more significantly than an incident laser and, therefore, it can remove the particles more efficiently. The laser plasma shock wave plays a dominant role in removing particles, which is attributed to its strong burst force. The pressure of the laser plasma shock wave is determined by the laser pulse energy and the gap between the focus of laser and substrate surface. In order to obtain the working conditions for particle removal, the removal mechanism, as well as the temporal and spatial characteristics of velocity, propagation distance and pressure of shock wave have been researched. On the basis of our results, the conditions for nano-particle removal are achieved.
Keywords:  laser-induced plasma      shock wave      nano-particles      surface cleaning  
Received:  01 March 2016      Revised:  19 April 2016      Published:  05 September 2016
PACS:  52.40.Hf (Plasma-material interactions; boundary layer effects)  
  62.50.-p (High-pressure effects in solids and liquids)  
  79.20.Ds (Laser-beam impact phenomena)  
  52.50.Lp (Plasma production and heating by shock waves and compression)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11574221).
Corresponding Authors:  Guoying Feng     E-mail:  guoing_feng@scu.edu.cn,hjhscu@gmail.com

Cite this article: 

Jinghua Han(韩敬华), Li Luo(罗莉), Yubo Zhang(张玉波), Ruifeng Hu(胡锐峰), Guoying Feng(冯国英) Conditions for laser-induced plasma to effectively remove nano-particles on silicon surfaces 2016 Chin. Phys. B 25 095204

[1] Ng D, Huang P Y, Jeng Y R and Liang H 2007 Electrochem. Solid-State Lett. 10 H227
[2] Andreev V A, Freer E M, de Larios J M, Prausnitz J M and Radke C J 2011 J. Electrochem. Soc. 158 H55
[3] Andreev V A, Prausnitz J M and Radke C J 2011 J. Appl. Phys. 109 053512
[4] Varghese I and Cetinkaya C 2004 J. Adhes. Sci. Technol. 18 795
[5] Kruusing A 2004 Opt. Las. Eng. 41 307
[6] Cetinkaya C and Peri M D M 2004 Nanotechnology 15 435
[7] Lee J M 2001 J. Appl. Phys. 89 6496
[8] Kudryashov S I, Allen S D and Shukla S D 2006 Part. Sci. Technol. 24 281
[9] Leontyev A, Semerok A, Farcage D, Thro P Y, Grisolia C, Widdowson A and JET-EFDA contributors 2011 Fusion Eng. Des. 86 1728
[10] Grojo D, Cros A, Delaporte P and Sentis M 2007 Appl. Surf. Sci. 253 8309
[11] Bekefi G 1966 Radiation Processes in Plasmas (New York: Wiley)
[12] Liu W, Bernhardt J, Théberge F, Chin S L, Châteauneuf M and Dubois J 2007 J. Appl. Phys. 102 033111
[13] Keldysh L V 1965 Sov. Phys. JETP 20 1307
[14] Morgan C G 1975 Rep. Prog. Phys. 38 621
[15] Cao S Q, Su M G, Sun D X, Min Q and Dong C Z 2016 Chin. Phys. Lett. 33 04520
[16] Luo G, Chen Y, Daniels H, Dubrow R and Vertes A 2006 J. Phys. Chem. B 110 13381
[17] Lee J M and Watkins K 2000 Opt. Express 7 68
[18] Paul I, Majeed B, Razeeb K M and Barton J 2006 Acta Mater. 54 3991
[19] Salleo A 2001 High-Power Laser Damage in Fused Silica (Ph. D. Dissertation) (Berkeley: University of California)
[20] Tunna L, Kearns A, O'neill W and Sutcliffe C 2001 J. Opt. Las. Tech. 33 135
[21] Israelachvili J 2002 Intermolecular and Surface Forces 2nd edn. (New York: Academic)
[22] Zhang Y Z, Wang G A, Zhu J, Shen Z H, Ni X W and Lu J 2007 Chin. Phys. 16 2752
[1] Experimental investigation on the properties of liquid film breakup induced by shock waves
Xianzhao Song(宋先钊), Bin Li(李斌), Lifeng Xie(解立峰). Chin. Phys. B, 2020, 29(8): 086201.
[2] Damage characteristics of laser plasma shock wave on rear surface of fused silica glass
Xiong Shen(沈雄), Guo-Ying Feng(冯国英), Sheng Jing(景晟), Jing-Hua Han(韩敬华), Ya-Guo Li(李亚国), Kai Liu(刘锴). Chin. Phys. B, 2019, 28(8): 085202.
[3] Studies of flow field characteristics during the impact of a gaseous jet on liquid-water column
Jian Wang(王健), Wen-Jun Ruan(阮文俊), Hao Wang(王浩), Li-Li Zhang(张莉莉). Chin. Phys. B, 2019, 28(6): 064704.
[4] Investigation of convergent Richtmyer-Meshkov instability at tin/xenon interface with pulsed magnetic driven imploding
Shaolong Zhang(张绍龙), Wei Liu(刘伟), Guilin Wang(王贵林), Zhengwei Zhang(章征伟), Qizhi Sun(孙奇志), Zhaohui Zhang(张朝辉), Jun Li(李军), Yuan Chi(池原), Nanchuan Zhang(张南川). Chin. Phys. B, 2019, 28(4): 044702.
[5] Lower order three-dimensional Burgers equation having non-Maxwellian ions in dusty plasmas
Apul N Dev. Chin. Phys. B, 2017, 26(2): 025203.
[6] Study on shock wave-induced cavitation bubbles dissolution process
Huan Xu(许欢), Peng-Fei Fan(范鹏飞), Yong Ma(马勇), Xia-Sheng Guo(郭霞生), Ping Yang(杨平), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2017, 26(2): 024301.
[7] Influence of shockwave profile on ejecta from shocked Pb surface: Atomistic calculations
Guo-Wu Ren(任国武), Shi-Wen Zhang(张世文), Ren-Kai Hong(洪仁楷), Tie-Gang Tang(汤铁钢), Yong-Tao Chen(陈永涛). Chin. Phys. B, 2016, 25(8): 086202.
[8] Enhanced laser-induced plasma channels in air
Yanlei Zuo(左言磊), Xiaofeng Wei(魏晓峰), Kainan Zhou(周凯南), Xiaoming Zeng(曾小明),Jingqin Su(粟敬钦), Zhihong Jiao(焦志宏), Na Xie(谢娜), Zhaohui Wu(吴朝辉). Chin. Phys. B, 2016, 25(3): 035203.
[9] Laser-driven flier impact experiments at the SG-III prototype laser facility
Shui Min, Chu Gen-Bai, Xin Jian-Ting, Wu Yu-Chi, Zhu Bin, He Wei-Hua, Xi Tao, Gu Yu-Qiu. Chin. Phys. B, 2015, 24(9): 094701.
[10] Sound field prediction of ultrasonic lithotripsy in water with spheroidal beam equations
Zhang Lue, Wang Xiang-Da, Liu Xiao-Zhou, Gong Xiu-Fen. Chin. Phys. B, 2015, 24(1): 014301.
[11] Shadowgraph investigation of plasma shock wave evolution from Al target under 355-nm laser ablation
Liu Tian-Hang, Hao Zuo-Qiang, Gao Xun, Liu Ze-Hao, Lin Jing-Quan. Chin. Phys. B, 2014, 23(8): 085203.
[12] Mitigation of energetic ion debris from Gd plasma using dual laser pulses and the combined effect with ambient gas
Dou Yin-Ping, Sun Chang-Kai, Liu Chao-Zhi, Gao Jian, Hao Zuo-Qiang, Lin Jing-Quan. Chin. Phys. B, 2014, 23(7): 075202.
[13] Hydrothermal synthesis and up-conversion luminescence of Ho3+/Yb3+ co-doped CaF2
Yang Zheng, Guo Chong-Feng, Chen Ye-Qing, Li Lin, Li Ting, Jeong Jung-Hyun. Chin. Phys. B, 2014, 23(6): 064212.
[14] Radio-frequency compressed electron pulse-width characterization by cross-correlation between electron bunches and laser-induced plasma
Li Jing, Pei Min-Jie, Qi Da-Long, Qi Ying-Peng, Yang Yan, Sun Zhen-Rong. Chin. Phys. B, 2014, 23(12): 124209.
[15] The internal propagation of fusion flame with the strong shock of a laser driven plasma block for advanced nuclear fuel ignition
B. Malekynia, S. S. Razavipour. Chin. Phys. B, 2013, 22(5): 055202.
No Suggested Reading articles found!