Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 093401    DOI: 10.1088/1674-1056/25/9/093401

Intrinsic product polarization and branch ratio in theS(1D, 3P)+HD reaction on three electronic states

Lin Li(李琳)1,2, Shunle Dong(董顺乐)1
1. College of Information Science and Engineering, Ocean University of China, Qingdao 266071, China;
2. College of Computer Science and Technology, Qingdao University, Qingdao 266071, China

The intrinsic product polarization and intramolecular isotope effect of the S(1D, 3P)+HD reaction have been investigated on both the lowest singlet state (1A') and the triplet state (3A' and 3A'') potential energy surfaces by using quasi-classical trajectory and quantum mechanical methods. The calculations indicate that intramolecular isotope effects are different on the three electronic states. The stereodynamics study shows that the P(θr) distributions, P(φr) distributions, and polarization-dependent differential cross sections (PDDCSs) (00) are sensitive to mass factor and the product angular momentum vectors are not only aligned but also oriented.

Keywords:  quasi-classical trajectory      quantum mechanics      product polarization      branch ratio  
Received:  03 December 2015      Revised:  10 May 2016      Accepted manuscript online: 
PACS:  34.20.-b (Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions)  
  03.65.-w (Quantum mechanics)  
  82.20.Tr (Kinetic isotope effects including muonium)  
Corresponding Authors:  Lin Li     E-mail:

Cite this article: 

Lin Li(李琳), Shunle Dong(董顺乐) Intrinsic product polarization and branch ratio in theS(1D, 3P)+HD reaction on three electronic states 2016 Chin. Phys. B 25 093401

[1] Casavecchia P 2000 Rep. Prog. Phys. 63 355
[2] Liu K 2001 Annu. Rev. Phys. Chem. 52 139
[3] Althorpe S C and Clary D C 2003 Annu. Rev. Phys. Chem. 54 493
[4] Lee S H and Liu K 1998 Chem. Phys. Lett. 290 323
[5] Lee S H and Liu K 1998 J. Phys. Chem. A 102 8637
[6] Lee S H and Liu K 2000 Appl. Phys. B: Lasers Opt. 71 627
[7] Chang A H H and Lin S H 2000 Chem. Phys. Lett. 320 161
[8] Zyubin A S, Mebel A M, Chao S D and Skodje R T 2001 J. Chem. Phys. 114 320
[9] Chao S D and Skodje R T 2001 J. Phys. Chem. A 105 2474
[10] Ho T S, Hollebeek T, Rabitz H, Chao S D, Skodje R T, Zyubin A S and Mebel A M 2002 J. Chem. Phys. 116 4124
[11] Maiti B, Schatz G C and Lendvay G 2004 J. Phys. Chem. A 108 8772
[12] Honvault P and Launay J M 2003 Chem. Phys. Lett. 370 371
[13] Rackham E J, Gonzalez-Lezana T and Manolopoulos D E 2003 J. Chem.Phys. 119 12895
[14] Banares L, Aoiz F J, Honvault P and Launay J M 2004 J. Phys. Chem. A 108 1616
[15] Mouret L, Launay J M, Terao-Dunseath M and Dunseath K 2004 Phys. Chem. Chem. Phys. 6 4105
[16] Lin S Y and Guo H 2005 J. Chem. Phys. 122 074304
[17] Chu T S, Han K L and Schatz G C 2007 J. Phys. Chem. A 111 8286
[18] Shafer-Ray N E, Orr-Ewing A J and Zare R N 1995 J. Phys. Chem. 99 7591
[19] Alexander A J, Aoiz F J, Banares L, Brouard M and Simons J P 2000 Phys. Chem. Chem. Phys. 2 571
[20] Aldegunde J, Alvarino J M, Kendrick B K, Saez Rabanos V, de Miranda M P and Aoiz F J 2006 Phys. Chem. Chem. Phys. 8 4881
[21] Song J B and Gislason E A 1993 J. Chem. Phys. 99 5117
[22] Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483
[23] Bai M M, Ge M H, Yang H and Zheng Y J 2012 Chin. Phys. B 21 123401
[24] Guo Y H, Zhang F Y and Ma H Z 2013 Chin. Phys. B 22 053402
[25] Zhang L, Chen M D, Wang M L and Han K L 2000 J. Chem. Phys. 112 3710
[26] Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
[27] Chu T S 2010 J. Comput. Chem. 31 1385
[28] Wang M L, Han K L, Zhan J P, Huang J H and He G Z 1998 Chem. Phys. 236 387
[29] Wang M L, Han K L, Zhan J P, Wu V W K, He G Z and Lou N Q 1997 Chem, Phys. Lett. 278 307
[30] Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
[31] Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
[32] Chu T S, Zhang H, Yuan S P, Fu.A P, Si H Z, Tian F H and Duan Y B 2009 J. Phys. Chem. A 113 3470
[33] Han K L, Zhang L, Xu D L, He G Z and Lou N Q 2001 J. Phys. Chem. A. 105 2956
[34] Zhang X and Han K L 2006 Int.J. Quant. Chem. 106 1815
[35] Zhao D, Chu T S and Hao C 2013 Chin. Phys. B 22 063401
[36] Chi X L, Zhao J F, Zhang Y J, Ma F C and Li Y Q 2015 Chin. Phys. B 24 053401
[37] Qiang W 2014 Chin. Phys. B 23 023401
[38] Yue X F 2013 Chin. Phys. B 22 113401
[39] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[40] Han K L, Zheng X G, Sun B F and He G Z 1991 Chem. Phys. Lett. 181 474
[41] Xu Z H and Zong F J 2011 Chin. Phys. B 20 063104
[42] Li H, zheng B, Yin J Q and Meng Q T 2011 Chin. Phys. B 12 123401
[43] Zhang Y Y, Li S J, Shi Y, Xie T X and Jin M X 2014 Chin. Phys. B 12 123402
[44] Wang Y H, Xiao C Y, Deng K M and Lu R F 2014 Chin. Phys. B 4 043401
[45] Xie T X, Zhang Y Y, Shi Y, Li Z R and Jin M X 2015 Chin. Phys. B 4 043402
[46] Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
[47] Chu T S and Han K L 2008 Phys. Chem. Chem. Phys. 10 2431
[48] Casavecchia P, Leonori F and Balucani N 2015 Int. Rev. Phys. Chem. 34 161
[1] Perspective for aggregation-induced delayed fluorescence mechanism: A QM/MM study
Jie Liu(刘杰), Jianzhong Fan(范建忠), Kai Zhang(张凯), Yuchen Zhang(张雨辰), Chuan-Kui Wang(王传奎), Lili Lin(蔺丽丽). Chin. Phys. B, 2020, 29(8): 088504.
[2] Experimental demonstration of tight duality relation inthree-path interferometer
Zhi-Jin Ke(柯芝锦), Yu Meng(孟雨), Yi-Tao Wang(王轶韬), Shang Yu(俞上), Wei Liu(刘伟), Zhi-Peng Li(李志鹏), Hang Wang(汪航), Qiang Li(李强), Jin-Shi Xu(许金时), Jian-Shun Tang(唐建顺), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2020, 29(5): 050307.
[3] Effect of isotope on state-to-state dynamics for reactive collision reactions O(3P)+H2+→OH++H and O(3P)+H2+→OH+H+ in ground state 12A" and first excited 12A' potential energy surfaces
Juan Zhao(赵娟), Ting Xu(许婷), Lu-Lu Zhang(张路路), Li-Fei Wang(王立飞). Chin. Phys. B, 2020, 29(2): 023105.
[4] Quasi-classical trajectory study of H+LiH (v=0, 1, 2, j=0)→Li+H2 reaction on a new global potential energy surface
Yu-Liang Wang(王玉良), De-Zhi Su(宿德志), Cun-Hai Liu(刘存海), Hui Li(李慧). Chin. Phys. B, 2019, 28(8): 083402.
[5] Phase-related noise characteristics of 780 nm band single-frequency lasers used in the cold atomic clock
Xi Zhang(张茜), Fei Yang(杨飞), Zi-Tong Feng(冯子桐), Jie-Jun Zhao(赵洁珺), Fang Wei(魏芳), Hai-Wen Cai(蔡海文), Rong-Hui Qu(瞿荣辉). Chin. Phys. B, 2019, 28(7): 074209.
[6] Optimal phase estimation with photon-number difference measurement using twin-Fock states of light
J H Xu(徐佳慧), J Z Wang(王建中), A X Chen(陈爱喜), Y Li(李勇), G R Jin(金光日). Chin. Phys. B, 2019, 28(12): 120303.
[7] Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods
Yong Zhang(张勇), Chengguo Jiang(姜成果). Chin. Phys. B, 2019, 28(12): 123101.
[8] Dynamics of the CH4+O(3P)→CH3(ν=0)+OH(ν'=0) reaction
Zhong-An Jiang(蒋仲安), Ya Peng(彭亚), Ju-Shi Chen(陈举师), Gui Lan(兰桂), Hao-Yu Lin(林浩宇). Chin. Phys. B, 2018, 27(6): 063401.
[9] Solvent effects and potential of mean force study of the SN2 reaction of CH3F+CN- in water
Chen Li(李琛), Peng Liu(刘鹏), Yongfang Li(李永方), Dunyou Wang(王敦友). Chin. Phys. B, 2018, 27(3): 033401.
[10] Effects of collision energy and rotational quantum number on stereodynamics of the reactions: H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2
Wei Wang(王伟), Yong-Jiang Yu(于永江), Gang Zhao(赵刚), Chuan-Lu Yang(杨传路). Chin. Phys. B, 2016, 25(8): 083402.
[11] Quasi-classical trajectory study of collision energy effect on the stereodynamics of H + BrO→O + HBr reaction
Xie Ting-Xian, Zhang Ying-Ying, Shi Ying, Li Ze-Rui, Jin Ming-Xing. Chin. Phys. B, 2015, 24(4): 043402.
[12] Theoretical prediction of energy dependence for D+BrO→DBr+O reaction: The rate constant and product rotational polarization
Zhang Ying-Ying, Xie Ting-Xian, Li Ze-Rui, Shi Ying, Jin Ming-Xing. Chin. Phys. B, 2015, 24(3): 038201.
[13] Quasi-classical trajectory study of the isotope effect on the stereodynamics in the reaction H(2S)+CH(X2Π; v=0, j=1)→C(1D)+H2(X1Σg+)
Wang Yun-Hui, Xiao Chuan-Yun, Deng Kai-Ming, Lu Rui-Feng. Chin. Phys. B, 2014, 23(4): 043401.
[14] Theoretical study of stereodynamics for the N+H2/D2/T2 reactions
Li Yong-Qing, Zhao Jin-Feng, Zhang Yong-Jia, Chi Xiao-Lin, Ding Yong, Ma Feng-Cai. Chin. Phys. B, 2014, 23(12): 123401.
[15] Approximate solutions of Klein—Gordon equation with improved Manning—Rosen potential in D-dimensions using SUSYQM
A. N. Ikot, H. Hassanabadi, H. P. Obong, Y. E. Chad Umoren, C. N. Isonguyo, B. H. Yazarloo. Chin. Phys. B, 2014, 23(12): 120303.
No Suggested Reading articles found!