Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 083402    DOI: 10.1088/1674-1056/25/8/083402

Effects of collision energy and rotational quantum number on stereodynamics of the reactions: H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2

Wei Wang(王伟), Yong-Jiang Yu(于永江), Gang Zhao(赵刚), Chuan-Lu Yang(杨传路)
School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
Abstract  The stereodynamical properties of H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2 reactions are studied in this paper by using the quasi-classical trajectory (QCT) method with different collision energies on the double many-body expansion (DMBE) potential energy surface (PES) (Poveda L A and Varandas A J C 2005Phys. Chem. Chem. Phys. 7 2867). In a range of collision energy from 2 to 20 kcal/mol, the vibrational rotational quantum numbers of the NH molecules are specifically investigated on v=0 and j=0, 2, 5, 10 respectively. The distributions of P(θr), P(φr), P(θr, φr), (2π/σ)(dσ00/dωt) differential cross-section (DCSs) and integral cross-sections(ICSs) are calculated. The ICSs, computed for collision energies from 2 kcal/mol to 20 kcal/mol, for the ground state are in good agreement with the cited data. The results show that the reagent rotational quantum number and initial collision energy both have a significant effect on the distributions of the k-j', the k-k'-j', and the k-k' correlations. In addition, the DCS is found to be susceptible to collision energy, but it is not significantly affected by the rotational excitation of reagent.
Keywords:  quasi-classical trajectory method      stereodynamics      potential energy surface      vector correlation  
Received:  27 January 2016      Revised:  20 April 2016      Accepted manuscript online: 
PACS:  34.50.Lf (Chemical reactions)  
  82.20.Kh (Potential energy surfaces for chemical reactions)  
Fund: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. 2016ZRB01066) and the University Student's Science and Technology Innovation Fund of Ludong University, China (Grant No. 131007).
Corresponding Authors:  Yong-Jiang Yu     E-mail:

Cite this article: 

Wei Wang(王伟), Yong-Jiang Yu(于永江), Gang Zhao(赵刚), Chuan-Lu Yang(杨传路) Effects of collision energy and rotational quantum number on stereodynamics of the reactions: H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2 2016 Chin. Phys. B 25 083402

[1] Mcclelland G M and Herschbach D R 1979 J. Phys. Chem. A 83 1445
[2] Jonah C D, Zare R N and Ottinger C 1972 J. Chem. Phys. 56 263
[3] Morley C 1981 Sym. Combust. 18 23
[4] Koshi M and Yoshimura M 1990 J. Chem. Phys. 93 8703
[5] Davidson D F and Hanson R K 1990 Int. J. Chem. Kinet. 22 843
[6] Adam L, Hack W, Zhu H, Qu Z W and Schinke R 2005 J. Chem. Phys. 122 114301
[7] Poveda L A and Varandas A J C 2005 Phys. Chem. Chem. Phys. 7 2867
[8] Varandas A J C 1988 Adv. Chem. Phys. 74 255
[9] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[10] Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
[11] Zhang J, Chu T S, Dong S L, Yuan S P, Fu A P and Duan Y B 2011 Chin. Phys. Lett. 28 93403
[12] Yu Y J, Xu Q and Xu X W 2011 Chin. Phys. B 20 123402
[13] Xia W Z, Yu Y J and Yang C L 2012 Acta Phys. Sin. 61 223401 (in Chinese)
[14] Yu Y J, Wang D H, Feng S X and Xia W Z 2012 J. Theor. Comput. Chem. 11 763
[15] Han B R, Yang H, Zheng Y J, Varandas A J C 2010 Chem. Phys. Lett. 493 225
[16] Wang M L, Han K L and He G Z 1988 J. Phys. Chem. A 102 10204
[17] Shaferray N E, Orrewing A J and Zare R N 1995 J. Phys. Chem. 99 7591
[18] Li X H, Wang M S, Pino I, Yang C L and Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438
[19] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[20] Li R J, Han K L, Li F E, Lu R C, He G Z and Lou N Q 1994 Chem. Phys. Lett. 220 281
[21] Lu R F, Wang Y H and Deng K M 2013 J. Comput. Chem. 34 1735
[22] Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
[23] Wang Y H, Xiao C Y, Deng K M and Lu R F 2014 Chin. Phys. B 23 043401
[24] Chen M D, Han K L and Lou N Q 2002 J. Chem. Phys. 283 463
[25] Zhang X and Han K L 2006 Int. J. Quantum Chem. 106 1815
[26] Tan R S, Liu X G and Hu M 2012 Chin. Phys. Lett. 29 123101
[27] Wei Q 2013 Chin. Phys. Lett. 30 073101
[28] Xie T X, Zhang Y Y, Shi Y, Li Z R and Jin M X 2015 Chin. Phys. B 24 043402
[29] He D, Wang M S, Yang C L and Jiang Z J 2013 Chin. Phys. B 22 068201
[30] Li Y Q, Yang Y F, Yu Y, Zhang Y J and Ma F C 2016 Chin. Phys. B 25 023401
[31] Zhai H S and Han K L 2011 J. Chem. Phys. 135 104314
[32] Wei Q 2015 Chin. Phys. Lett. 32 13101
[33] Chu T S and Han K L 2008 Phys. Chem. Chem. Phys. 10 2431
[34] Chen X P and Li X L 2013 Chin. Phys. Lett. 30 064702
[35] Ju L P, Han K L and Zhang J Z H 2009 J. Comput. Chem. 30 305
[36] Wang M X, Wang M S, Yang C L, Liu J, Ma X G and Wang L Z 2015 Acta Phys. Sin. 64 043402 (in Chinese)
[37] Chi X L, Zhao J F, Zhang Y J, Ma F C and Li Y Q 2015 Chin. Phys. B 24 053401
[38] Li H Z, Liu X G, Tan R S and Hu M 2015 Chin. Phys. Lett. 32 83102
[1] Accurate Deep Potential model for the Al-Cu-Mg alloy in the full concentration space
Wanrun Jiang(姜万润), Yuzhi Zhang(张与之), Linfeng Zhang(张林峰), and Han Wang(王涵). Chin. Phys. B, 2021, 30(5): 050706.
[2] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[3] Collision of cold CaF molecules: Towards evaporative cooling
Yuefeng Gu(顾跃凤), Yunxia Huang(黄云霞), Chuanliang Li(李传亮), Xiaohua Yang(杨晓华). Chin. Phys. B, 2019, 28(3): 033401.
[4] The CALYPSO methodology for structure prediction
Qunchao Tong(童群超), Jian Lv(吕健), Pengyue Gao(高朋越), Yanchao Wang(王彦超). Chin. Phys. B, 2019, 28(10): 106105.
[5] Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound
Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2019, 28(10): 103105.
[6] Accurate double many-body expansion potential energy surface of HS2(A2A') by scaling the external correlation
Lu-Lu Zhang(张路路), Yu-Zhi Song(宋玉志), Shou-Bao Gao(高守宝), Yuan Zhang(张媛), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2016, 25(5): 053101.
[7] Energy and rotation-dependent stereodynamics of H(2S) + NH(a1Δ)→H2(X1Σg+) + N(2D) reaction
Yong-Qing Li(李永庆), Yun-Fan Yang(杨云帆), Yang Yu(于洋), Yong-jia Zhang(张永嘉), Feng-Cai Ma(马凤才). Chin. Phys. B, 2016, 25(2): 023401.
[8] Catalytic reduction of N2O by CO over PtlAum- clusters:A first-principles study
Mi Hong, Wei Shi-Hao, Duan Xiang-Mei, Pan Xiao-Yin. Chin. Phys. B, 2015, 24(9): 098201.
[9] Globally accurate ab initio based potential energy surface of H2O+(X4A")
Song Yu-Zhi, Zhang Yuan, Zhang Lu-Lu, Gao Shou-Bao, Meng Qing-Tian. Chin. Phys. B, 2015, 24(6): 063101.
[10] Stereodynamics of the reactions: F+H2/HD/HT→FH+H/D/T
Chi Xiao-Lin, Zhao Jin-Feng, Zhang Yong-Jia, Ma Feng-Cai, Li Yong-Qing. Chin. Phys. B, 2015, 24(5): 053401.
[11] Quasi-classical trajectory study of collision energy effect on the stereodynamics of H + BrO→O + HBr reaction
Xie Ting-Xian, Zhang Ying-Ying, Shi Ying, Li Ze-Rui, Jin Ming-Xing. Chin. Phys. B, 2015, 24(4): 043402.
[12] Vector correlations study of the reaction N(2D)+ H2(X1Σg+)→NH(a1Δ)+ H(2S) with different collision energies and reagent vibration excitations
Li Yong-Qing, Zhang Yong-Jia, Zhao Jin-Feng, Zhao Mei-Yu, Ding Yong. Chin. Phys. B, 2015, 24(11): 113402.
[13] Effects of the vibrational and rotational excitation of reagent on the stereodynamics of the reaction S(3P) + H2→SH + H
Shan Guang-Ling, Wang Mei-Shan, Yang Chuan-Lu, Li Yan-Qing. Chin. Phys. B, 2014, 23(6): 068201.
[14] Quasi-classical trajectory study of the isotope effect on the stereodynamics in the reaction H(2S)+CH(X2Π; v=0, j=1)→C(1D)+H2(X1Σg+)
Wang Yun-Hui, Xiao Chuan-Yun, Deng Kai-Ming, Lu Rui-Feng. Chin. Phys. B, 2014, 23(4): 043401.
[15] Stereodynamics study of the H’(2S)+NH(X3-→N(4S) +H2 reaction
Wei Qiang. Chin. Phys. B, 2014, 23(2): 023401.
No Suggested Reading articles found!