Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 078102    DOI: 10.1088/1674-1056/25/7/078102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Tunable thermoelectric properties in bended graphene nanoribbons

Chang-Ning Pan(潘长宁)1, Jun He(何军)1, Mao-Fa Fang(方卯发)2
1 School of Science, Hunan University of Technology, Zhuzhou 412008, China;
2 Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education and Department of Physics, Hunan Normal University, Changsha 410081, China
Abstract  The ballistic thermoelectric properties in bended graphene nanoribbons (GNRs) are systematically investigated by using atomistic simulation of electron and phonon transport. We find that the electron resonant tunneling effect occurs in the metallic-semiconducting linked ZZ-GNRs (the bended GNRs with zigzag edge leads). The electron-wave quantum interference effect occurs in the metallic-metallic linked AA-GNRs (the bended GNRs with armchair edge leads). These different physical mechanisms lead to the large Seebeck coefficient S and high electron conductance in bended ZZ-GNRs/AA-GNRs. Combined with the reduced lattice thermal conduction, the significant enhancement of the figure of merit ZT is predicted. Moreover, we find that the ZT\max (the maximum peak of ZT) is sensitive to the structural parameters. It can be conveniently tuned by changing the interbend length of bended GNRs. The magnitude of ZT ranges from the 0.15 to 0.72. Geometry-controlled ballistic thermoelectric effect offers an effective way to design thermoelectric devices such as thermocouples based on graphene.
Keywords:  graphene nanoribbons      thermoelectric properties      quantum interference effect  
Received:  01 February 2016      Revised:  25 March 2016      Published:  05 July 2016
PACS:  81.05.U- (Carbon/carbon-based materials)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61401153) and the Natural Science Foundation of Hunan Province, China (Grant Nos. 2015JJ2050 and 14JJ3126).
Corresponding Authors:  Jun He     E-mail:  hejun@hnu.edu.cn

Cite this article: 

Chang-Ning Pan(潘长宁), Jun He(何军), Mao-Fa Fang(方卯发) Tunable thermoelectric properties in bended graphene nanoribbons 2016 Chin. Phys. B 25 078102

[1] Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[2] Geim A K 2009 Science 324 1530
[3] Wang Q, Xie H Q, Jiao H J, Li Z J and Nie Y H 2012 Chin. Phys. B 21 117310
[4] Wu Z H, Xie H Q, Zhai Y B, Gan L H and Liu J 2015 Chin. Phys. B 24 034402
[5] Yu Z, Guo Y, Zheng J and Chi F 2013 Chin. Phys. B 22 117303
[6] Feng S K, Li S M and Fu H Z 2014 Chin. Phys. B 23 117202
[7] Guo H H, Yang T, Tao P and Zhang Z D 2014 Chin. Phys. B 23 017201
[8] Xue L, Xu B and Yi L 2014 Chin. Phys. B 23 037103
[9] Kim R, Datta S and Lundstrom M S 2009 J. Appl. Phys. 105 034506
[10] Zhou J and Yang R G 2011 Appl. Phys. Lett. 98 173107
[11] Mazzamuto F, Nguyen V H, Apertet Y, Caër C, Chassat C, Martin J S and Dollfus P 2011 Phys. Rev. B 83 235426
[12] Ouyang Y and Guo J 2009 Appl. Phys. Lett. 94 263107
[13] Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S and Shi L 2010 Science 328 213
[14] Li W, Sevincli H, Cuniberti G and Roche S 2010 Phys. Rev. B 82 041410
[15] Gunst T, Markussen T, Jauho A P and Brandbyge M 2011 Phys. Rev. B 84 155449
[16] Chang P H and Nikolić B K 2012 Phys. Rev. B 86 041406
[17] Jiang J W, Lan J H, Wang J S and Li B W 2010 J. Appl. Phys. 107 054314
[18] Hu J, Schiffli S, Vallabhaneni A, Ruan X and Chen Y P 2010 Appl. Phys. Lett. 97 133107
[19] Xu Y, Chen X B, Gu B L and Duan W H 2009 Appl. Phys. Lett. 95 233116
[20] Wang J S, Wang J and Lü J T 2008 Eur. Phys. J. B 62 381
[21] Jiang J W, Wang J S and Li B W 2011 J. Appl. Phys. 109 014326
[22] Pan C N, Xie Z X, Tang L M and Chen K Q 2012 Appl. Phys. Lett. 101 103115
[23] Wu Y and Yang X X 1997 Phys. Rev. Lett. 78 3086
[24] Shi Q W, Zhou J and Wu M W 2004 Appl. Phys. Lett. 85 2547
[25] Weisshaar A, Lary J, Goodnick S M and Tripathi V K 1989 Appl. Phys. Lett. 55 2114
[26] Nie Y H, Zhang Y B, Liang J Q, et al. 1999 Physica B: Condensed Matter 270 95
[27] Nie Y H, Jin Y H, Liang J Q, et al. 2000 J. Phys.: Conden. Matt. 12 L87
[28] Li X Q and Yan Y J 2001 Appl. Phys. Lett. 79 2190
[1] Low lattice thermal conductivity and high figure of merit in p-type doped K3IO
Weiqiang Wang(王巍强), Zhenhong Dai(戴振宏), Qi Zhong(钟琦), Yinchang Zhao(赵银昌), and Sheng Meng(孟胜). Chin. Phys. B, 2020, 29(12): 126501.
[2] Physical properties of ternary thallium chalcogenes Tl2MQ3 (M=Zr, Hf; Q=S, Se, Te) via ab-initio calculations
Engin Ateser, Oguzhan Okvuran, Yasemin Oztekin Ciftci, Haci Ozisik, Engin Deligoz. Chin. Phys. B, 2019, 28(10): 106301.
[3] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
[4] Modulated thermal transport for flexural and in-plane phonons in double-stub graphene nanoribbons
Chang-Ning Pan(潘长宁), Meng-Qiu Long(龙孟秋), Jun He(何军). Chin. Phys. B, 2018, 27(8): 088101.
[5] Thermoelectric properties of lower concentration K-doped Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Sen Chen(陈森), Dan Yan(闫丹), Jin-GuangYang(杨金光), Li Wang(王立), Xiu-Lan Huai(淮秀兰). Chin. Phys. B, 2018, 27(5): 057201.
[6] Enhanced thermoelectric properties of p-type polycrystalline SnSe by regulating the anisotropic crystal growth and Sn vacancy
Chengyan Liu(刘呈燕), Lei Miao(苗蕾), Xiaoyang Wang(王潇漾), Shaohai Wu(伍少海), Yanyan Zheng(郑岩岩), Ziyang Deng(邓梓阳), Yulian Chen(陈玉莲), Guiwen Wang(王桂文), Xiaoyuan Zhou(周小元). Chin. Phys. B, 2018, 27(4): 047211.
[7] Enhanced thermoelectric performance in p-type Mg3Sb2 via lithium doping
Hao Wang(王浩), Jin Chen(陈进), Tianqi Lu(陆天奇), Kunjie Zhu(朱坤杰), Shan Li(李珊), Jun Liu(刘军), Huaizhou Zhao(赵怀周). Chin. Phys. B, 2018, 27(4): 047212.
[8] Graphene-enhanced thermoelectric properties of p-type skutterudites
Dandan Qin(秦丹丹), Yuan Liu(刘嫄), Xianfu Meng(孟宪福), Bo Cui(崔博), Yaya Qi(祁亚亚), Wei Cai(蔡伟), Jiehe Sui(隋解和). Chin. Phys. B, 2018, 27(4): 048402.
[9] Theoretical study on electronic structure and thermoelectric properties of PbSxTe1-x (x=0.25, 0.5, and 0.75) solid solution
Yong Lu(鲁勇), Kai-yue Li(李开跃), Xiao-lin Zhang(张晓林), Yan Huang(黄艳), Xiao-hong Shao(邵晓红). Chin. Phys. B, 2018, 27(2): 026103.
[10] Thermoelectric properties of two-dimensional hexagonal indium-VA
Jing-Yun Bi(毕京云), Li-Hong Han(韩利红), Qian Wang(王倩), Li-Yuan Wu(伍力源), Ruge Quhe(屈贺如歌), Peng-Fei Lu(芦鹏飞). Chin. Phys. B, 2018, 27(2): 026802.
[11] One-dimensional method of investigating the localized states in armchair graphene-like nanoribbons with defects
Yang Xie(谢阳), Zhi-Jian Hu(胡智健), Wen-Hao Ding(丁文浩), Xiao-Long Lü(吕小龙), Hang Xie(谢航). Chin. Phys. B, 2017, 26(12): 127310.
[12] Biaxial strain-induced enhancement in the thermoelectric performance of monolayer WSe2
Wanhuizi Shen(沈婉慧子), Daifeng Zou(邹代峰), Guozheng Nie(聂国政), Ying Xu(许英). Chin. Phys. B, 2017, 26(11): 117202.
[13] Thermoelectric properties of Li-doped Sr0.7Ba0.3Nb2O6-δ ceramics
Ya-Cui Zhang(张亚翠), Jian Liu(刘剑), Yi Li(李宜), Yu-Fei Chen(陈宇飞), Ji-Chao Li(李吉超), Wen-Bin Su(苏文斌), Yu-Cheng Zhou(周昱成), Jin-Ze Zhai(翟近泽), Teng Wang(王腾), Chun-Lei Wang(王春雷). Chin. Phys. B, 2017, 26(10): 107201.
[14] Optimize the thermoelectric performance of CdO ceramics by doping Zn
Xin-Yu Zha(查欣雨), Lin-Jie Gao(高琳洁), Hong-Chang Bai(白洪昌), Jiang-Long Wang(王江龙), Shu-Fang Wang(王淑芳). Chin. Phys. B, 2017, 26(10): 107202.
[15] First principle study of edge topological defect-modulated electronic and magnetic properties in zigzag graphene nanoribbons
Lu-Ting Huang(黄露婷), Zheng Chen(陈铮), Yong-Xin Wang(王永欣), Yan-Li Lu(卢艳丽). Chin. Phys. B, 2017, 26(10): 103103.
No Suggested Reading articles found!