Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 077404    DOI: 10.1088/1674-1056/25/7/077404
Special Issue: Virtual Special Topic — High temperature superconductivity

Synthesis of large FeSe superconductor crystals via ion release/introduction and property characterization

Dongna Yuan(苑冬娜)1, Yulong Huang(黄裕龙)1, Shunli Ni(倪顺利)1, Huaxue Zhou(周花雪)1, Yiyuan Mao(毛义元)1, Wei Hu(胡卫)1, Jie Yuan(袁洁)1, Kui Jin(金魁)1,2, Guangming Zhang(张广铭)3, Xiaoli Dong(董晓莉)1,2, Fang Zhou(周放)1,2
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China

Large superconducting FeSe crystals of (001) orientation have been prepared via a hydrothermal ion release/introduction route for the first time. The hydrothermally derived FeSe crystals are up to 10 mm×5 mm×0.3 mm in dimension. The pure tetragonal FeSe phase has been confirmed by x-ray diffraction (XRD) and the composition determined by both inductively coupled plasma atomic emission spectroscopy (ICP-AES) and energy dispersive x-ray spectroscopy (EDX). The superconducting transition of the FeSe samples has been characterized by magnetic and transport measurements. The zero-temperature upper critical field Hc2 is calculated to be 13.2-16.7 T from a two-band model. The normal-state cooperative paramagnetism is found to be predominated by strong spin frustrations below the characteristic temperature Tsn, where the Ising spin nematicity has been discerned in the FeSe superconductor crystals as reported elsewhere.

Keywords:  FeSe superconductor      hydrothermal growth via ion release/introduction      upper critical field      spin frustrations  
Received:  25 May 2016      Revised:  30 May 2016      Published:  05 July 2016
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  74.25.Op (Mixed states, critical fields, and surface sheaths)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11574370, 11274358, and 11190020), the National Basic Research Program of China (Grant No. 2013CB921700), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020100).

Corresponding Authors:  Xiaoli Dong, Fang Zhou     E-mail:;

Cite this article: 

Dongna Yuan(苑冬娜), Yulong Huang(黄裕龙), Shunli Ni(倪顺利), Huaxue Zhou(周花雪), Yiyuan Mao(毛义元), Wei Hu(胡卫), Jie Yuan(袁洁), Kui Jin(金魁), Guangming Zhang(张广铭), Xiaoli Dong(董晓莉), Fang Zhou(周放) Synthesis of large FeSe superconductor crystals via ion release/introduction and property characterization 2016 Chin. Phys. B 25 077404

[1] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. US A 105 14262
[2] Mcqueen T M, Huang Q, Ksenofontov V, Felser C, Xu Q, Zandbergen H, Hor Y S, Allred J, Williams A J, Qu D, Checkelsky J, Ong N P and Cava R J 2009 Phys. Rev. B 79 014522
[3] Medvedev S, Mcqueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G and Felser C 2009 Nat. Mater. 8 630
[4] Bendele M, Amato A, Conder K, Elender M, Keller H, Klauss H H, Luetkens H, Pomjakushina E, Raselli A and Khasanov R 2010 Phys. Rev. Lett. 104 087003
[5] Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G and Shibauchi T 2015 arXiv1512.06951
[6] Terashima T, Kikugawa N, Kasahara S, Watashige T, Matsuda Y, Shibauchi T and Uji S 2016 arXiv1603.03487
[7] Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z and Chen X H 2016 Phys. Rev. Lett. 116 077002
[8] Böhmer A E and Meingast C 2015 arXiv1505.05120
[9] Glasbrenner J K, Mazin I I, Jeschke H O, Hirschfeld P J, Fernandes R M and Valenti R 2015 Nat. Phys. 11 953
[10] Chubukov A V, Fernandes R M and Schmalian J 2015 Phys. Rev. B 91 201105
[11] Chubukov A V, Khodas M and Fernandes R M 2016 arXiv1602.05503
[12] Rahn M C, Ewings R A, Sedlmaier S J, Clarke S J and Boothroyd A T 2015 Phys. Rev. B 91 180501
[13] Wang Q, Shen Y, Pan B, Zhang X, Ikeuchi K, Iida K, Christianson A D, Walker H C, Adroja D T, Abdel-Hafiez M, Chen X, Chareev D A, Vasiliev A N and Zhao J 2015 arXiv1511.02485
[14] Wang Q S, Shen Y, Pan B Y, Hao Y Q, Ma M W, Zhou F, Steffens P, Schmalzl K, Forrest T R, Abdel-Hafiez M, Chen X J, Chareev D A, Vasiliev A N, Bourges P, Sidis Y, Cao H B and Zhao J 2016 Nat. Mater. 15 159
[15] Shimojima T, Suzuki Y, Sonobe T, Nakamura A, Sakano M, Omachi J, Yoshioka K, Kuwata Gonokami M, Ono K, Kumigashira H, Böhmer A E, Hardy F, Wolf T, Meingast C, Löhneysen H v, Ikeda H and Ishizaka K 2014 Phys. Rev. B 90 121111
[16] Baek S H, Efremov D V, Ok J M, Kim J S, Van Den Brink J and Buchner B 2015 Nat. Mater. 14 210
[17] Yuan D N, Yuan J, Huang Y L, Ni S L, Feng Z P, Zhou H X, Mao Y Y, Jin K, Zhang G M, Dong X L, Zhou F and Zhao Z X 2016 arXiv:1605.01507
[18] Ma M W, Yuan D N, Wu Y, Zhou H X, Dong X L and Zhou F 2014 Supercond. Sci. Technol. 27 122001
[19] Zhang S B, Sun Y P, Zhu X D, Zhu X B, Wang B S, Li G, Lei H C, Luo X, Yang Z R, Song W H and Dai J M 2009 Supercond. Sci. Technol. 22 015020
[20] Chareev D, Osadchii E, Kuzmicheva T, Lin J Y, Kuzmichev S, Volkova O and Vasiliev A 2013 Cryst. Eng. Commun. 15 1989
[21] Rao S M, Mok B H, Ling M C, Ke C T, Chen T C, Tsai I M, Lin Y L, Liu H L, Chen C L, Hsu F C, Huang T W, Wu T B and Wu M K 2011 J. Appl. Phys. 110 113919
[22] Ma M W, Yuan D N, Wu Y, Dong X L and Zhou F 2014 Phys. C 506 154
[23] Hu R W, Lei H C, Abeykoon M, Bozin E S, Billinge S J L, Warren J B, Siegrist T and Petrovic C 2011 Phys. Rev. B 83 224502
[24] Koz C, Schmidt M, Borrmann H, Burkhardt U, Rößler S, Carrillo Cabrera W, Schnelle W, Schwarz U and Grin Y 2014 Z. Anorg. Allg. Chem. 640 1600
[25] Patel U, Hua J, Yu S H, Avci S, Xiao Z L, Claus H, Schlueter J, Vlasko-Vlasov V V, Welp U and Kwok W K 2009 Appl. Phys. Lett. 94 082508
[26] Karlsson S, Strobel P, Sulpice A, Marcenat C, Legendre M, Gay F, Pairis S, Leynaud O and Toulemonde P 2015 Supercond. Sci. Technol. 28 105009
[27] Dong X L, Jin K, Yuan D N, Zhou H X, Yuan J, Huang Y L, Hua W, Sun J L, Zheng P, Hu W, Mao Y Y, Ma M W, Zhang G M, Zhou F and Zhao Z X 2015 Phys. Rev. B 92 064515
[28] Gurevich A 2003 Phys. Rev. B 67 184515
[1] Investigation of dimensionality in superconducting NbN thin film samples with different thicknesses and NbTiN meander nanowire samples by measuring the upper critical field
Mudassar Nazir, Xiaoyan Yang(杨晓燕), Huanfang Tian(田焕芳), Pengtao Song(宋鹏涛), Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Xueyi Guo(郭学仪), Yirong Jin(金贻荣), Lixing You(尤立星), Dongning Zheng(郑东宁). Chin. Phys. B, 2020, 29(8): 087401.
[2] Different behavior of upper critical field in Fe1-xSe single crystals
Shunli Ni(倪顺利), Wei Hu(胡卫), Peipei Shen(沈沛沛), Zhongxu Wei(魏忠旭), Shaobo Liu(刘少博), Dong Li(李栋), Jie Yuan(袁洁), Li Yu(俞理), Kui Jin(金魁), Fang Zhou(周放), Xiaoli Dong(董晓莉), Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2019, 28(12): 127401.
[3] Superconductivity with peculiar upper critical fields in quasi-one-dimensional Cr-based pnictides
Guang-Han Cao(曹光旱), Zeng-Wei Zhu(朱增伟). Chin. Phys. B, 2018, 27(10): 107401.
[4] The upper critical field in two-band layered superconductors
Liu Min-Xia, Gan Zi-Zhao. Chin. Phys. B, 2007, 16(3): 826-833.
[5] Anisotropy of the upper critical field in c-axis oriented MgB2 thin films
Liu Zhen, Zhu Ya-Bin, Zhou Yue-Liang, Chen Zheng-Hao, Lü Hui-Bin, Yang Guo-Zhen, Wang Shu-Fang. Chin. Phys. B, 2004, 13(7): 1120-1123.
No Suggested Reading articles found!