Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 074101    DOI: 10.1088/1674-1056/25/7/074101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optimization of loss and gain multilayers for reducing the scattering of a perfect conducting cylinder

Zhen-Zhong Yu(余振中), Guo-Shu Zhao(赵国树), Gang Sun(孙罡), Hai-Fei Si(司海飞), Zhong Yang(杨忠)
School of Intelligence Science and Control Engineering, Jinling Institute of Technology, Nanjing 211169, China
Abstract  Reduction of electromagnetic scattering from a conducting cylinder could be achieved by covering it with optimized multilayers of normal dielectric and plasmonic material. The plasmonic material with intrinsic losses could degrade the cloaking effect. Using a genetic algorithm, we present the optimized design of loss and gain multilayers for reduction of the scattering from a perfect conducting cylinder. This multilayered structure is theoretically and numerically analyzed when the plasmonic material with low loss and high loss respectively is considered. We demonstrate by full-wave simulation that the optimized nonmagnetic gain-loss design can greatly compensate the decreased cloaking effect caused by loss material, which facilitates the realization of practical electromagnetic cloaking, especially in the optical range.
Keywords:  transformation optics      invisibility cloak      metamaterial  
Received:  30 September 2015      Revised:  01 February 2016      Published:  05 July 2016
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.Fx (Diffraction and scattering)  
  42.79.-e (Optical elements, devices, and systems)  
Fund: Project supported by the Research Foundation of Jinling Institute of Technology, China (Grant No. JIT-B-201426), the Jiangsu Modern Education and Technology Key Project, China (Grant No. 2014-R-31984), the Jiangsu 333 Project Funded Research Project, China (Grant No. BRA2010004), and the University Science Research Project of Jiangsu Province, China (Grant No. 15KJB520010).
Corresponding Authors:  Zhen-Zhong Yu     E-mail:  nanfish@jit.edu.cn

Cite this article: 

Zhen-Zhong Yu(余振中), Guo-Shu Zhao(赵国树), Gang Sun(孙罡), Hai-Fei Si(司海飞), Zhong Yang(杨忠) Optimization of loss and gain multilayers for reducing the scattering of a perfect conducting cylinder 2016 Chin. Phys. B 25 074101

[1] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[2] Kwon D H and Werner D H 2008 New J. Phys. 10 115023
[3] Yu Z Z, Feng Y J, Wang Z B, Zhao J M and Jiang T 2013 Chin. Phys. B 22 034102
[4] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[5] Cai W, Chettiar U K, Kildishev A V and Shalaev V M 2007 Nat. Photo. 1 224
[6] Alú A and Engheta N 2005 Phys. Rev. E 72 016623
[7] Alú A and Engheta N 2007 Opt. Express 15 3318
[8] Alú A and Engheta N 2008 Phys. Rev. Lett. 100 113901
[9] Popa B I and Cummer S A 2009 Phys. Rev. A 79 023806
[10] Xi S, Chen H S, Zhang B, Wu B I and Kong J A 2009 Phys. Rev. B 79 155122
[11] Yu Z Z, Feng Y J, Xu X F, Zhao J M and Jiang T 2011 J. Phys. D: Appl. Phys. 44 185102
[12] Wang X and Semouchkina E 2013 Appl. Phys. Lett. 102 113506
[13] Han T C, Qiu C W, Hao J M, Tang X H and Zouhdi S 2011 Opt. Express 19 8610
[14] Balanis C A 1989 Advanced Engineering Electromagnetics (New York: Wiley)
[15] Luo X Y, Liu D Y, Yao L F and Dong J F 2014 Acta Phys. Sin. 63 084101 (in Chinese)
[16] Rivas J G, Janke C, Bolivar P and Kurz H 2005 Opt. Express 13 847
[17] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[18] Garcia N, Ponizovskaya E V and Xiao J Q 2002 Appl. Phys. Lett. 80 1120
[19] Garcia N, Ponizowskaya E V, Zhu H, Xiao J Q and Pons A 2003 Appl. Phys. Lett. 82 3147
[20] Dai D X, Shi Y C, He S L, Wosinski L and Thylen L 2011 Opt. Express 19 12925
[21] Liu N, Wei H, Li J, Wang Z X, Tian X R, Pan A L and Xu H X 2013 Sci. Rep. 3 1967
[22] Kirstaedter N, Schmidt O G, Ledentsov N N, Bimberg D, Ustinov V M, Egorov A Y, Zhukov A E, Maximov M V, Kopev P S and Alferov Z I 1996 Appl. Phys. Lett. 69 1226
[1] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[2] Multi-functional vanadium dioxide integrated metamaterial for terahertz wave manipulation
Jian-Xing Zhao(赵建行), Jian-Lin Song(宋建林), Yao Zhou(周姚), Rui-Long Zhao(赵瑞龙), Yi-Chao Liu(刘艺超), Jian-Hong Zhou(周见红). Chin. Phys. B, 2020, 29(9): 094205.
[3] Hyperbolic metamaterials for high-efficiency generation of circularly polarized Airy beams
Lin Chen(陈林), Huihui Li(李会会), Weiming Hao(郝玮鸣), Xiang Yin(殷祥), Jian Wang(王健). Chin. Phys. B, 2020, 29(8): 084210.
[4] Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network
Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿). Chin. Phys. B, 2020, 29(6): 064201.
[5] Dynamically adjustable asymmetric transmission and polarization conversion for linearly polarized terahertz wave
Tong Li(李彤), Fang-Rong Hu(胡放荣), Yi-Xian Qian(钱义先), Jing Xiao(肖靖), Long-Hui Zhang(张隆辉), Wen-Tao Zhang(张文涛), Jia-Guang Han(韩家广). Chin. Phys. B, 2020, 29(2): 024203.
[6] Efficient and multifunctional terahertz polarization control device based on metamaterials
Xiao-Fei Jiao(焦晓飞), Zi-Heng Zhang(张子恒), Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2020, 29(11): 114209.
[7] Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media
Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷)†, and Yidong Hou(侯宜栋)‡. Chin. Phys. B, 2020, 29(10): 107303.
[8] Generation of orbital angular momentum and focused beams with tri-layer medium metamaterial
Zhi-Chao Sun(孙志超), Meng-Yao Yan(闫梦瑶), and Bi-Jun Xu(徐弼军)†. Chin. Phys. B, 2020, 29(10): 104101.
[9] Analysis of elliptical thermal cloak based on entropy generation and entransy dissipation approach
Meng Wang(王梦), Shiyao Huang(黄诗瑶), Run Hu(胡润), Xiaobing Luo(罗小兵). Chin. Phys. B, 2019, 28(8): 087804.
[10] Three-dimensional thermal illusion devices with arbitrary shape
Xingwei Zhang(张兴伟), Xiao He(何晓), Linzhi Wu(吴林志). Chin. Phys. B, 2019, 28(6): 064403.
[11] Equivalent electromagnetic parameters for microwave metamaterial absorber using a new symmetry model
Junming Zhang(张峻铭), Donglin He(何东霖), Guowu Wang(王国武), Peng Wang(王鹏), Liang Qiao(乔亮), Tao Wang(王涛), Fashen Li(李发伸). Chin. Phys. B, 2019, 28(5): 058401.
[12] Electrically triggered dual-band tunable terahertz metamaterial band-pass filter based on Si3N4-VO2-Si3N4 sandwich
Shuai Zhao(赵帅), Fangrong Hu(胡放荣), Xinlong Xu(徐新龙), Mingzhu Jiang(江明珠), Wentao Zhang(张文涛), Shan Yin(银珊), Wenying Jiang(姜文英). Chin. Phys. B, 2019, 28(5): 054203.
[13] Contribution of terahertz waves to near-field radiative heat transfer between graphene-based hyperbolic metamaterials
Qi-Mei Zhao(赵启梅), Tong-Biao Wang(王同标), De-Jian Zhang(张德建), Wen-Xing Liu(刘文兴), Tian-Bao Yu(于天宝), Qing-Hua Liao(廖清华), Nian-Hua Liu(刘念华). Chin. Phys. B, 2018, 27(9): 094401.
[14] Dynamically tunable terahertz passband filter based on metamaterials integrated with a graphene middle layer
MaoSheng Yang(杨茂生), LanJu Liang(梁兰菊), DeQuan Wei(韦德泉), Zhang Zhang(张璋), Xin Yan(闫昕), Meng Wang(王猛), JianQuan Yao(姚建铨). Chin. Phys. B, 2018, 27(9): 098101.
[15] High-performance lens antenna using high refractive index metamaterials
Lai-Jun Wang(王来军), Qiao-Hong Chen(陈巧红), Fa-Long Yu(余发龙), Xi Gao(高喜). Chin. Phys. B, 2018, 27(8): 087802.
No Suggested Reading articles found!