Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 070502    DOI: 10.1088/1674-1056/25/7/070502
GENERAL Prev   Next  

Multifractal modeling of the production of concentrated sugar syrup crystal

Sheng Bi(闭胜), Jianbo Gao(高剑波)
Institute of Complexity Science and Big Data Technology, Guangxi University, Nanning 530005, China
Abstract  High quality, concentrated sugar syrup crystal is produced in a critical step in cane sugar production: the clarification process. It is characterized by two variables: the color of the produced sugar and its clarity degree. We show that the temporal variations of these variables follow power-law distributions and can be well modeled by multiplicative cascade multifractal processes. These interesting properties suggest that the degradation in color and clarity degree has a system-wide cause. In particular, the cascade multifractal model suggests that the degradation in color and clarity degree can be equivalently accounted for by the initial “impurities” in the sugarcane. Hence, more effective cleaning of the sugarcane before the clarification stage may lead to substantial improvement in the effect of clarification.
Keywords:  time series analysis      non-poisson process      power-law distribution      multiplicative cascade multifractal processes  
Received:  12 January 2016      Revised:  29 February 2016      Published:  05 July 2016
PACS:  05.10.Gg (Stochastic analysis methods)  
  05.30.Pr (Fractional statistics systems)  
  05.40.Ca (Noise)  
  05.45.Df (Fractals)  
Corresponding Authors:  Jianbo Gao     E-mail:

Cite this article: 

Sheng Bi(闭胜), Jianbo Gao(高剑波) Multifractal modeling of the production of concentrated sugar syrup crystal 2016 Chin. Phys. B 25 070502

[1] Yu X M, Ye J K, Hu J, Liao X P and Gao J B 2013 Math. Probl. Eng. 2013 868313
[2] Li Q T, Huang K N and Pan L L 2010 Modern Food Sci. Tech. 26 619 (in Chinese)
[3] Zhong B J and Gao W H 2010 Food Sci. Tech. 9 022 (in Chinese)
[4] Huang Y C, Guan R C, Yang F and Zhao C Y 2011 Food Sci. Tech. 2 017 (in Chinese)
[5] Huang Y C, Gao H F, Wu X C, Ren X N and Yang F 2014 Food & Machinery 30 5 (in Chinese)
[6] Kamat S, Diwanji V, Smith J G and Madhavan K P 2005 Proc. 2005 IEEE Int. Conf. on Computational Intelligence for Measurement Systems and Applications, 2005, Giardini Naxos, Italy, pp. 209-214
[7] Lin X F and Yang J R 2009 IEEE International Joint Conference on Neural Networks, 2009, Atlanta, Georgia, USA, pp. 1814-1819
[8] Wang Y X, Zhai J Q, Xu W W, Sun G Z and Wu P H 2015 Chin. Phys. Lett. 32 97401
[9] Ji Q B, Yi Z, Yang Z Q and Meng X Y 2015 Chin. Phys. Lett. 32 50501
[10] Zhai J Q, Li Y C, Shi J X, Zhong Y, Li X H and Xu W W 2015 Chin. Phys. Lett. 32 47402
[11] Fang H, Wang Z J, Hong F and Tao G 2015 Chin. Phys. Lett. 32 40502
[12] Tao Y C, Cui M Z, Li H H and Yang J Z 2015 Chin. Phys. Lett. 32 20501
[13] Li G M and Li S X 2015 Acta Phys. Sin. 64 160502 (in Chinese)
[14] Dang X Y, Li H T, Yuan Z S and Hu W 2015 Acta Phys. Sin. 64 160501 (in Chinese)
[15] Wang S T, Wu Z M, Wu J G, Zhou L and Xia G Q 2015 Acta Phys. Sin. 64 154205 (in Chinese)
[16] Ding N, Zhang H J, Zhang X, Ou J W and Luo D 2015 Acta Phys. Sin. 64 139801 (in Chinese)
[17] Wang R and Guo J B 2015 Acta Phys. Sin. 64 130702 (in Chinese)
[18] Ren H P and Bai C 2015 Chin. Phys. B 24 080503
[19] Wei W and Zuo M 2015 Chin. Phys. B 24 080501
[20] Liu S, Wang Z L, Zhao S S, Li H B and Li J X 2015 Chin. Phys. B 24 074501
[21] Shu J 2015 Chin. Phys. B 24 060509
[22] Fang Y, Wang G Y and Wang X Y 2015 Chin. Phys. B 24 060506
[23] Frisch U 1995 Turbulence-The Legacy of A.N. Kolmogorov (Cambridge: Cambridge University Press)
[24] Gouyet J F 1995 Physics and Fractal Structures (New York: Springer)
[25] Frederiksen R D, Dahm W J A and Dowlin D R 1997 J. Fluid Mech. 338 127
[26] Parisi G and Frisch U 1985 On the Singularity Structure of Fully Developed Turbulence, Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, North Holland, pp. 71-84
[27] Over T M and Gupta V K 1996 J. Geophys. Res. 101 26319
[28] Davis A, Marshak A, Wiscombe W and Cahalan R 1994 J. Geophys. Res. 99 8055
[29] Davis A, Marshak A, Wiscombe W and Cahalan R 1996 Current Trends in Nonstationary Analysis (1st edn.) (Singapore: World Scientific) pp. 97-158
[30] Mandelbrot B B 1997 Fractals and Scaling in Finance (1st edn.) (New York: Springer) pp. 174-176
[31] Tung W W, Moncrief M W and Gao J B 2004 J. Climate 17 2736
[32] Gao J B and Rubin I 2001 Comput. Commun. 24 1400
[33] Gao J B and Rubin I 2001 Int. J. Commun. Syst. 14 783
[34] Peng C K, Buldyrev S V, Havlin S, Simons M, Stanley H E and Goldberger A L 1994 Phys. Rev. E 49 1685
[35] Riley M A, Kuznetsov N, Bonnette S, Wallot S and Gao J B 2012 Front. Physiol. 3 10
[36] Kuznetsov N, Bonnette S, Gao J B and Riley M A 2012 Ann. Biomed. Eng. 41 1646
[37] Gao J B, Hu J, Mao X and Perc M 2012 J. R. Soc. Interface 9 1956
[38] Gao J B, Hu J and Tung W W 2011 PLoS ONE 6 e24331
[1] Extracting hidden weak sinusoidal signal with short duration from noisy data:Analytical theory and computational realization
Ying Zhang(张英), Zhaoyang Zhang(张朝阳), Hong Qian(钱弘), Gang Hu(胡岗). Chin. Phys. B, 2017, 26(10): 100508.
[2] Markov transition probability-based network from time series for characterizing experimental two-phase flow
Gao Zhong-Ke, Hu Li-Dan, Jin Ning-De. Chin. Phys. B, 2013, 22(5): 050507.
[3] Comparison study of typical algorithms for reconstructing time series from the recurrence plot of dynamical systems
Liu Jie, Shi Shu-Ting, Zhao Jun-Chan. Chin. Phys. B, 2013, 22(1): 010505.
[4] Relationships of exponents in multifractal detrended fluctuation analysis and conventional multifractal analysis
Zhou Yu, Leung Yee, Yu Zu-Guo. Chin. Phys. B, 2011, 20(9): 090507.
[5] Degree and connectivity of the Internet's scale-free topology
Zhang Lian-Ming, Deng Xiao-Heng, Yu Jian-Ping, Wu Xiang-Sheng. Chin. Phys. B, 2011, 20(4): 048902.
[6] S-curve networks and an approximate method for estimating degree distributions of complex networks
Guo Jin-Li. Chin. Phys. B, 2010, 19(12): 120503.
[7] Convergence speed of consensus problems over undirected scale-free networks
Sun Wei, Dou Li-Hua. Chin. Phys. B, 2010, 19(12): 120513.
[8] Small-time scale network traffic prediction based on a local support vector machine regression model
Meng Qing-Fang, Chen Yue-Hui, Peng Yu-Hua. Chin. Phys. B, 2009, 18(6): 2194-2199.
No Suggested Reading articles found!