Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 070201    DOI: 10.1088/1674-1056/25/7/070201
GENERAL   Next  

Robust H control for uncertain Markovian jump systems with mixed delays

R Saravanakumar, M Syed Ali
Department of Mathematics, Thiruvalluvar University, Vellore-632115, Tamil Nadu, India
Abstract  We scrutinize the problem of robust H control for a class of Markovian jump uncertain systems with interval time-varying and distributed delays. The Markovian jumping parameters are modeled as a continuous-time finite-state Markov chain. The main aim is to design a delay-dependent robust H control synthesis which ensures the mean-square asymptotic stability of the equilibrium point. By constructing a suitable Lyapunov-Krasovskii functional (LKF), sufficient conditions for delay-dependent robust H control criteria are obtained in terms of linear matrix inequalities (LMIs). The advantage of the proposed method is illustrated by numerical examples. The results are also compared with the existing results to show the less conservativeness.
Keywords:  linear matrix inequality      Lyapunov method      Markovian jumping parameters      robust H control  
Received:  11 September 2015      Revised:  21 March 2016      Published:  05 July 2016
PACS:  02.10.Yn (Matrix theory)  
  02.30.Hq (Ordinary differential equations)  
  02.30.Ks (Delay and functional equations)  
  02.30.Yy (Control theory)  
Fund: Project supported by Department of Science and Technology (DST) under research project No. SR/FTP/MS-039/2011.
Corresponding Authors:  R Saravanakumar, M Syed Ali     E-mail:  saravanamaths30@gmail.com;syedgru@gmail.com

Cite this article: 

R Saravanakumar, M Syed Ali Robust H control for uncertain Markovian jump systems with mixed delays 2016 Chin. Phys. B 25 070201

[1] Syed Ali M and Saravanakumar R 2015 Chin. Phys. B 24 050201
[2] Syed Ali M and Saravanakumar R 2015 Chin. Phys. B 24 090202
[3] Kwon O M, Park J H and Lee S M 2010 J. Optim. Theory Appl. 145 343
[4] Arunkumar A, Sakthivel R and Mathiyalagan K 2015 Neurocomputing 149 1524
[5] Lei T, Song Q and Zhao Z 2014 Discrete Dyn. Nat. Soc. 2014 657621
[6] Xu S, Lam J and Yang C 2001 IEEE Trans. Automat. Control 46 1321
[7] Jeong C, Park P G and Kim S H 2012 Appl. Math. Comput. 218 10533
[8] Lee W I, Lee S Y and Park P G 2014 Appl. Math. Comput. 243 570
[9] Zhao X and Zeng Q 2010 J. Frankl. Inst. 347 863
[10] Liu J, Yao B and Gu Z 2011 Circuit Syst. Signal Process. 30 1253
[11] Karimi H R 2012 J. Franklin Inst. 349 1480
[12] Syed Ali M, Arik S and Saravanakmuar R 2015 Neurocomputing 158 167
[13] Lien C H, Chen J D, Yu K W and Chung L Y 2012 Comput. Math. Appl. 64 1187
[14] Wang C and Shen Y 2012 Comput. Math. Appl. 63 985
[15] Senthilkumar T and Balasubramaniam P 2011 Appl. Math. Lett. 24 1986
[16] Syed Ali M and Saravanakumar R 2014 Chin. Phys. B 23 120201
[17] Syed Ali M and Saravanakumar R 2014 Appl. Math. Comput. 249 510
[18] Gu K, Kharitonov V L and Chen J 2003 Stability of Time-Delay Systems (Boston: Birkhuser)
[19] Chen B, Liu X and Lin C 2009 Fuzzy Sets and Systems 160 403
[20] Xu D, Li B, Long S and Teng L 2014 Nonlinear Anal. 108 128
[1] Synchronization of Markovian jumping complex networks with event-triggered control
Shao Hao-Yu, Hu Ai-Hua, Liu Dan. Chin. Phys. B, 2015, 24(9): 098902.
[2] Robust H control of uncertain systems with two additive time-varying delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2015, 24(9): 090202.
[3] Stability analysis of Markovian jumping stochastic Cohen–Grossberg neural networks with discrete and distributed time varying delays
M. Syed Ali. Chin. Phys. B, 2014, 23(6): 060702.
[4] Improved delay-dependent robust H control of an uncertain stochastic system with interval time-varying and distributed delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2014, 23(12): 120201.
[5] Cluster exponential synchronization of a class of complex networks with hybrid coupling and time-varying delay
Wang Jun-Yi, Zhang Hua-Guang, Wang Zhan-Shan, Liang Hong-Jing. Chin. Phys. B, 2013, 22(9): 090504.
[6] Stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks with mixed delays and Wiener process based on sampled-data control
M. Kalpana, P. Balasubramaniam. Chin. Phys. B, 2013, 22(7): 078401.
[7] Leader–following consensus control for networked multi-teleoperator systems with interval time-varying communication delays
M. J. Park, S. M. Lee, J. W. Son, O. M. Kwon, E. J. Cha. Chin. Phys. B, 2013, 22(7): 070506.
[8] H synchronization of chaotic neural networks with time-varying delays
O. M. Kwon, M. J. Park, Ju H. Park, S. M. Lee, E. J. Cha. Chin. Phys. B, 2013, 22(11): 110504.
[9] Novel delay dependent stability analysis of Takagi–Sugeno fuzzy uncertain neural networks with time varying delays
M. Syed Ali. Chin. Phys. B, 2012, 21(7): 070207.
[10] Novel delay-distribution-dependent stability analysis for continuous-time recurrent neural networks with stochastic delay
Wang Shen-Quan, Feng Jian, Zhao Qing. Chin. Phys. B, 2012, 21(12): 120701.
[11] Leader–following consensus criteria for multi-agent systems with time-varying delays and switching interconnection topologies
M. J. Park, O. M. Kwon, Ju H. Park, S. M. Lee, E. J. Cha. Chin. Phys. B, 2012, 21(11): 110508.
[12] Robust H control for uncertain systems with heterogeneous time-varying delays via static output feedback
Wang Jun-Wei, Zeng Cai-Bin. Chin. Phys. B, 2012, 21(11): 110206.
[13] State estimation for neural neutral-type networks with mixed time-varying delays and Markovian jumping parameters
S. Lakshmanan, Ju H. Park, H. Y. Jung, P. Balasubramaniam. Chin. Phys. B, 2012, 21(10): 100205.
[14] Novel stability criteria for fuzzy Hopfield neural networks based on an improved homogeneous matrix polynomials technique
Feng Yi-Fu, Zhang Qing-Ling, Feng De-Zhi. Chin. Phys. B, 2012, 21(10): 100701.
[15] Robust stability analysis of Takagi–Sugeno uncertain stochastic fuzzy recurrent neural networks with mixed time-varying delays
M. Syed Ali. Chin. Phys. B, 2011, 20(8): 080201.
No Suggested Reading articles found!