Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 068103    DOI: 10.1088/1674-1056/25/6/068103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Electronic transport properties of silicon junctionless nanowire transistors fabricated by femtosecond laser direct writing

Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Hao Wang(王昊), Qi-feng Lyu(吕奇峰), Wang Zhang(张望), Xiang Yang(杨香), Fu-Hua Yang(杨富华)
Engineering Research Center for Semiconductor Integration Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  

Silicon junctionless nanowire transistor (JNT) is fabricated by femtosecond laser direct writing on a heavily n-doped SOI substrate. The performances of the transistor, i.e., current drive, threshold voltage, subthreshold swing (SS), and electron mobility are evaluated. The device shows good gate control ability and low-temperature instability in a temperature range from 10 K to 300 K. The drain currents increasing by steps with the gate voltage are clearly observed from 10 K to 50 K, which is attributed to the electron transport through one-dimensional (1D) subbands formed in the nanowire. Besides, the device exhibits a better low-field electron mobility of 290 cm2·V-1·s-1, implying that the silicon nanowires fabricated by femtosecond laser have good electrical properties. This approach provides a potential application for nanoscale device patterning.

Keywords:  junctionless nanowire transistor      femtosecond laser lithography      electron mobility      quantum transport     
Received:  21 January 2016      Published:  05 June 2016
PACS:  81.07.Gf (Nanowires)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.40.-c (Electronic transport in interface structures)  
  85.30.Tv (Field effect devices)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61376096, 61327813, and 61404126) and the National Basic Research Program of China (Grant No. 2010CB934104).

Corresponding Authors:  Wei-Hua Han, Fu-Hua Yang     E-mail:  weihua@semi.ac.cn;fhyang@semi.ac.cn

Cite this article: 

Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Hao Wang(王昊), Qi-feng Lyu(吕奇峰), Wang Zhang(张望), Xiang Yang(杨香), Fu-Hua Yang(杨富华) Electronic transport properties of silicon junctionless nanowire transistors fabricated by femtosecond laser direct writing 2016 Chin. Phys. B 25 068103

[1] Colinge J P, Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I, Razavi P, O'Neill B, Blake A, White M, Kelleher A M, McCarthy B and Murphy R 2010 Nat. Nanotechnol. 5 225
[2] Ionescu A M 2010 Nat. Nanotechnol. 5 178
[3] Zhang Y L, Chen Q D, Xia H and Sun H B 2010 Nano Today 5 435
[4] Nakata Y, Okada T andMaeda M 2002 Appl. Phys. Lett. 81 4239
[5] Kawata S, Sun H B, Tanaka T and Takada K 2001 Nature 412 697
[6] Juodkazis1 S, Mizeikis1 V, Seet K K, Miwa M and Misawa1 H 2005 Nanotechnology 16 846
[7] Tan D, Li Y, Qi F, Yang H and Gongb Q 2007 Appl. Phys. Lett. 90 071106
[8] Carvalho E J, Alves M A, Braga E S and Cescato L 2006 Microelectr. J. 37 1265
[9] Ghibaudo G 1988 Electron. Lett. 24 543
[10] Wang H, Han W H, Ma L H, Li X M and Yang F H 2014 Chin. Phys. B 23 088107
[11] Yuan T, Mohammed R S, Jesse M K, Dong L, Michael J M, Richard L J Q, Hong J G and Xuan P A G 2012 Nano Lett. 12 6492
[12] Ma L H, Han W H, Wang H, Yang X and Yang F H 2015 IEEE Electron Dev. Lett. 36 941
[13] Kim R and Lundstrom M S 2008 IEEE Trans. Nanotechnol. 7 787
[14] Duarte J P, Kim M S, Choi S J and Choi Y K 2012 IEEE Trans. Electron Dev. 59 1008
[15] Philip F B and Terry P O 1989 Phys. Rev. B 40 1456
[16] Souza M de, Pavanello M A, Trevisoli R D, Doria R T and Colinge J P 2011 IEEE Electron Dev. Lett. 32 1322
[17] Colinge J P, Floyd L, Quinn A J, Redmond G, Alderman J C, Xiong W, Cleavelin C R, Schulz T, Schruefer K, Knoblinger G and Patruno P 2006 IEEE Electron Dev. Lett. 27 172
[18] Jeon D Y, Park S J, Mouis M, Barraud S, Kim G T and Ghibaudo G 2013 Solid State Electron. 80 135
[19] Kordoš P, Donoval D, Florovič M, Kováč J and Gregušová D 2008 Appl. Phys. Lett. 92 152113
[20] Zhang Y M, Feng S W, Zhu H, Gong X Q, Deng B and Ma L 2014 J. Semicond. 35 104003
[1] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[2] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[3] High performance InAlN/GaN high electron mobility transistors for low voltage applications
Minhan Mi(宓珉瀚), Meng Zhang(张濛), Sheng Wu(武盛), Ling Yang(杨凌), Bin Hou(侯斌), Yuwei Zhou(周雨威), Lixin Guo(郭立新), Xiaohua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(5): 057307.
[4] Characteristics of AlGaN/GaN high electron mobility transistors on metallic substrate
Minglong Zhao(赵明龙), Xiansheng Tang(唐先胜), Wenxue Huo(霍雯雪), Lili Han(韩丽丽), Zhen Deng(邓震), Yang Jiang(江洋), Wenxin Wang(王文新), Hong Chen(陈弘), Chunhua Du(杜春花), Haiqiang Jia(贾海强). Chin. Phys. B, 2020, 29(4): 048104.
[5] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[6] Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华). Chin. Phys. B, 2020, 29(3): 038104.
[7] Effect of defects properties on InP-based high electron mobility transistors
Shu-Xiang Sun(孙树祥), Ming-Ming Chang(常明铭), Meng-Ke Li(李梦珂), Liu-Hong Ma(马刘红), Ying-Hui Zhong(钟英辉), Yu-Xiao Li(李玉晓), Peng Ding(丁芃), Zhi Jin(金智), Zhi-Chao Wei(魏志超). Chin. Phys. B, 2019, 28(7): 078501.
[8] Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redfield approach
Xu-Min Chen(陈许敏), Chen Wang(王晨). Chin. Phys. B, 2019, 28(5): 050502.
[9] Effects of growth temperature and metamorphic buffer on electron mobility of InAs film grown on Si substrate by molecular beam epitaxy
Jing Zhang(张静), Hongliang Lv(吕红亮), Haiqiao Ni(倪海桥), Shizheng Yang(杨施政), Xiaoran Cui(崔晓然), Zhichuan Niu(牛智川), Yimen Zhang(张义门), Yuming Zhang(张玉明). Chin. Phys. B, 2019, 28(2): 028101.
[10] The origin of distorted intensity pattern sensed by a lens and antenna coupled AlGaN/GaN-HEMT terahertz detector
Xiang Li(李想), Jian-Dong Sun(孙建东), Hong-Juan Huang(黄宏娟), Zhi-Peng Zhang(张志鹏), Lin Jin(靳琳), Yun-Fei Sun(孙云飞), V V Popov, Hua Qin(秦华). Chin. Phys. B, 2019, 28(11): 118502.
[11] Observation of hopping transitions for delocalized electrons by temperature-dependent conductance in siliconjunctionless nanowire transistors
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Ya-Mei Dou(窦亚梅), Xiao-Di Zhang(张晓迪), Xin-Yu Wu(吴歆宇), Fu-Hua Yang(杨富华). Chin. Phys. B, 2019, 28(10): 107303.
[12] High-performance InAlGaN/GaN enhancement-mode MOS-HEMTs grown by pulsed metal organic chemical vapor deposition
Ya-Chao Zhang(张雅超), Zhi-Zhe Wang(王之哲), Rui Guo(郭蕊), Ge Liu(刘鸽), Wei-Min Bao(包为民), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(1): 018102.
[13] Transport spectroscopy through dopant atom array in silicon junctionless nanowire transistors
Xiao-Song Zhao(赵晓松), Wei-Hua Han(韩伟华), Yang-Yan Guo(郭仰岩), Ya-Mei Dou(窦亚梅), Fu-Hua Yang(杨富华). Chin. Phys. B, 2018, 27(9): 097310.
[14] Influence of dopant concentration on electrical quantum transport behaviors in junctionless nanowire transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Yang-Yan Guo(郭仰岩), Ya-Mei Dou(窦亚梅), Fu-Hua Yang(杨富华). Chin. Phys. B, 2018, 27(8): 088106.
[15] Integration of a field-effect-transistor terahertz detector with a diagonal horn antenna
Xiang Li(李想), Jian-dong Sun(孙建东), Zhi-peng Zhang(张志鹏), V V Popov, Hua Qin(秦华). Chin. Phys. B, 2018, 27(6): 068506.
No Suggested Reading articles found!