Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 067501    DOI: 10.1088/1674-1056/25/6/067501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Pressure effect on magnetic phase transition and spin-glass-like behavior of GdCo2B2

Guang-Hui Hu(胡光辉)1, Ling-Wei Li(李领伟)2, Umehara Izuru1
1 Department of Physics, Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan;
2 Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
Abstract  

We systematically investigate the effect of pressure on the magnetic properties of GdCo2B2 on the basis of alternating current (AC) susceptibility, AC heat capacity and electrical resistivity measurements under pressures up to 2.2 GPa. A detailed magnetic phase diagram under pressure is determined. GdCo2B2 exhibits three anomalies that apparently reflect magnetic phase transitions, respectively, at temperatures TC = 20.5 K, T1 = 18.0 K and TN = 11.5 K under ambient pressure. Under pressures up to 2.2 GPa, these anomalies are observed to slightly increase at TC and T1, and they coincide with each other above 1.6 GPa. Conversely, they decrease at TN and disappear under pressures higher than 1.4 GPa. The results indicate that the low-temperature magnetic phases can be easily suppressed by pressure. Moreover, the spin-glass-like behavior of GdCo2B2 is examined in terms of magnetization, aging effect and frequency dependence of AC susceptibility. A separation between the zero-field-cooled (ZFC) and field-cooled (FC) magnetization curves becomes evident at a low magnetic field of 0.001 T. A long-time relaxation behavior is observed at 4 K. The freezing temperature Tf increases with frequency increasing.

Keywords:  GdCo2B2      high pressure effect      phase diagram      spin-glass-like behavior  
Received:  02 October 2015      Revised:  18 February 2016      Accepted manuscript online: 
PACS:  75.20.En (Metals and alloys)  
  75.50.Cc (Other ferromagnetic metals and alloys)  
  75.50.Ee (Antiferromagnetics)  
Fund: 

Project supported by JSPS KAKENHI (Grant No. 24540366, Grant-in-Aid for Scientific Research (C)).

Corresponding Authors:  Guang-Hui Hu     E-mail:  hu-guanghui-rm@ynu.jp

Cite this article: 

Guang-Hui Hu(胡光辉), Ling-Wei Li(李领伟), Umehara Izuru Pressure effect on magnetic phase transition and spin-glass-like behavior of GdCo2B2 2016 Chin. Phys. B 25 067501

[1] Niihara K, Shishido T and Yajima S 1973 Bull. Chem. Soc. Jpn. 46 1137
[2] Felner I 1984 Solid State Commun. 52 191
[3] Rupp B, Rogl P and Hulliger F 1987 J. Less-Common Met. 135 113
[4] Li L, Nishimura K and Yamane H 2009 Appl. Phys. Lett. 94 102509
[5] Pospíšil J, Kitazawa H, Gupta A, Toyoizumi S, Tamaki A, Diviš M and Sechovsky V 2014 J. Phys. Soc. Jpn. 83 54713
[6] Nakashima M, Kohara H, Thamizhavel A, Matsuda T D, Haga Y, Hedo M, Uwatoko Y, Settai R and Onuki Y 2005 J. Phys.: Condens. Matter 17 4539
[7] Saxena S S, Agarwal P, Ahilan K, Grosche F M, Haselwimmer R K W, Steiner M J, Pugh E, Walker I R, Julian S R, Monthoux P, Lonzarich G G, Huxley A, Sheikin I, Braithwaite D and Flouquet J 2000 Nature 406 587
[8] Nakashima M, Tabata K, Thamizhavel A, Kobayashi T C, Hedo M, UwatokoY, Shimizu K, Settai R and Onuki Y 2004 J. Phys.: Condens. Matter 16 L255
[9] Li L, Hu G, Umeahra I, Huo D, Namiki T and Nishimura K 2012 J. Phys. Soc. Jpn. 81 073701
[10] Süllow S, Nieuwenhuys G J, Menovsky A. A, Mydosh J A, Mentink S A M, Mason T E and Buyers W J L 1997 Phys. Rev. Lett. 78 354
[11] Nieuwenhuys G J, Suellow S, Menovsky A A, Mydosh J A, Heffner R H, Le L P, MacLaughlin D E, Bernal O O and Schenck A 1998 J. Magn. Magn. Mater. 177-181 803
[12] Hemberger J, Krimmel A, Nicklas M, Knebel G, Paraskevopoulos M, Trinkl W, Brando M, Fritsch V and Loidl A 1999 Physica B 259-261 907
[13] Goremychkin E A, Osborn R, Rainford B D, Maluso R T, Adroja D T and Koza M 2008 Nat. Phys. 4 766
[14] Cannella V and Mydosh J A 1972 Phys. Rev. B 6 4220
[15] Hashimoto M, Tomioka F, Umehara I, Fujiwara T, Hedo M, Uwatoko Y 2006 Physica B 378-380 815
[16] Kraftmakher Y 2004 Modulation Calorimetry (Tokyo: Springer) p. 23
[17] Matsubayashi K, Hedo M, Umehara I, Katayama N, Ohgushi K, Yamada A, Munakata K, Matsumoto T and Uwatoko Y 2010 J. Phys.: Conf. Ser. 215 012187
[18] Jennings L D and Swenson C A 1958 Phys. Rev. 112 31
[19] Hopkinson J 1890 Proc. R. Soc. Lond. 48 1
[20] Balanda M 2013 Acta Phys. Pol. A 124 964
[21] Mydosh J A 1996 J. Magn. Magn. Mater. 157-158 606
[22] Monod P, Préjean J J and Tissier B 1979 J. Appl. Phys. 50 7324
[23] Binder K and Young A P 1986 Rev. Mod. 58 801
[24] Ghivelder L and Parisi F 2005 Phys. Rev. B 71 184425
[25] Dong Q Y, Chen J, Zhang H W, Sun J R and Shen B G 2008 J. Phys.: Condens. Matter 20 275235
[26] Li D X, Nimori S, Shiokawa Y, Haga Y, Yamamoto E and Onuki Y 2003 Phys. Rev. B 68 012413
[27] Szlawska M, Pikul A and Kaczorowski D 2007 Mater. Sci. Poland 25 1267
[28] Moyoshi T, Motoya K, Muro Y and Takabatake T 2012 J. Phys. Soc. Jpn. 81 014704
[29] Majumdar S, Sampathkumaran E V, Eckert D, Handstein A, Müller K H, Saha S R, Sugawara H and Sato H 1999 J. Phys.: Condens. Matter 11 L329
[30] Bernardi L W, Yoshino H, Hukushima K, Takayama H, Tobo A and Ito A 2001 Phys. Rev. Lett. 86 720
[31] Rossel C, Maeno Y and Morgenstern I 1989 Phys. Rev. Lett. 62 681
[32] Mydosh J A 1993 Spin Glasses: An Experimental Introduction (London: Taylor and Francis) p. 71
[33] Wang F, Zhang J, Chen Y, Wang G, Sun J R, Zhang S and Shen B 2004 Phys. Rev. B 69 094424
[34] Laiho R, Lähderanta E, Salminen J, Lisunov K G and Zakhvalinskii V S 2001 Phys. Rev. B 63 094405
[35] Vijayanandhini K, Simon C, Pralong V, Caignaert V and Raveau B 2009 Phys. Rev. B 79 224407
[36] Motoya K, Muro Y and Takabatake T 2010 J. Phys: Conf. Ser. 200 032048
[37] Motoya K, Moyoshi T and Shigeoka T 2011 J. Phys: Conf. Ser. 273 012124
[38] Wang K F, Wang Y, Wang L F, Dong S, Li D, Zhang Z D, Yu H, Li Q C and Liu J M 2006 Phys. Rev. B 73 134411
[39] Savitha Pillai S, Rangarajan G, Raju N P, Epstein A J and Santhosh P N 2007 J. Phys.: Condens. Matter 19 496221
[40] Savitha Pillai S, Santhosh P N, Harish Kumar N, John Thomas P and Tuna F 2009 J. Phys.: Condens. Matter 21 95409
[41] Tang Y K, Sun Y and Cheng Z H 2006 Phys. Rev. B 73 012409
[42] Rivadulla F, López-Quintela M A and Rivas J 2004 Phys. Rev. Lett. 93 167206
[43] Mukherjee S, Ranganathan R, Anilkumar P S and Joy P A 1996 Phys. Rev. B 54 9267
[44] Maignan A, Martin C, Damay F, Raveau B and Hejtmanek J 1998 Phys. Rev. B 58 2758
[45] Freitas R S, Ghivelder L, Damay F, Dias F and Cohen L F 2001 Phys. Rev. B 64 144404
[1] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[2] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[3] Physical properties and phase diagram of NaFe1 -xVxAs
Guang-Yang Dai(代光阳), Xin He(何鑫), Zhi-Wen Li(李芷文), Chang-Ling Zhang(张昌玲), Lu-Chuan Shi(史鲁川), Run-Ze Yu(于润泽), Xian-Cheng Wang(望贤成), and Chang-Qing Jin(靳常青). Chin. Phys. B, 2021, 30(1): 017401.
[4] Parametric study of the clustering transition in vibration driven granular gas system
Qi-Lin Wu(吴麒麟), Mei-Ying Hou(厚美瑛), Lei Yang(杨磊), Wei Wang(王伟), Guang-Hui Yang(杨光辉), Ke-Wei Tao(陶科伟), Liang-Wen Chen(陈良文), Sheng Zhang(张晟). Chin. Phys. B, 2020, 29(5): 054502.
[5] Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising ferromagnetic thin film:Monte Carlo treatment
B Boughazi, M Boughrara, M Kerouad. Chin. Phys. B, 2019, 28(2): 027501.
[6] Equation of state for aluminum in warm dense matter regime
Kun Wang(王坤), Dong Zhang(张董), Zong-Qian Shi(史宗谦), Yuan-Jie Shi(石元杰), Tian-Hao Wang(王天浩), Yue Zhang(张阅). Chin. Phys. B, 2019, 28(1): 016401.
[7] Structural phase transition, precursory electronic anomaly, and strong-coupling superconductivity in quasi-skutterudite (Sr1-xCax)3Ir4Sn13 and Ca3Rh4Sn13
Jun Luo(罗军), Jie Yang(杨杰), S Maeda, Zheng Li(李政), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2018, 27(7): 077401.
[8] Cubic anvil cell apparatus for high-pressure and low-temperature physical property measurements
Jin-Guang Cheng(程金光), Bo-Sen Wang(王铂森), Jian-Ping Sun(孙建平), Yoshiya Uwatoko. Chin. Phys. B, 2018, 27(7): 077403.
[9] Calculation of electric field-temperature (E, T) phase diagram of a ferroelectric liquid crystal near the SmA-SmCα* transition
F Trabelsi, H Dhaouadi, O Riahi, T Othman. Chin. Phys. B, 2018, 27(3): 037701.
[10] Epitaxially strained SnTiO3 at finite temperatures
Dawei Wang(王大威), Laijun Liu(刘来君), Jia Liu(刘佳), Nan Zhang(张楠), Xiaoyong Wei(魏晓勇). Chin. Phys. B, 2018, 27(12): 127702.
[11] Electro-optical properties and (E, T) phase diagram of fluorinated chiral smectic liquid crystals
R Zgueb, H Dhaouadi, T Othman. Chin. Phys. B, 2018, 27(10): 107701.
[12] Passivation effects of phosphorus on 4H-SiC (0001) Si dangling bonds: A first-principles study
Wenbo Li(李文波), Ling Li(李玲), Fangfang Wang(王方方), Liu Zheng(郑柳), Jinghua Xia(夏经华), Fuwen Qin(秦福文), Xiaolin Wang(王晓琳), Yongping Li(李永平), Rui Liu(刘瑞), Dejun Wang(王德君), Yan Pan(潘艳), Fei Yang(杨霏). Chin. Phys. B, 2017, 26(3): 037104.
[13] Li-ion batteries: Phase transition
Peiyu Hou(侯配玉), Geng Chu(褚赓), Jian Gao(高健), Yantao Zhang(张彦涛), Lianqi Zhang(张联齐). Chin. Phys. B, 2016, 25(1): 016104.
[14] Magnetic hysteresis, compensation behaviors, and phase diagrams of bilayer honeycomb lattices
Ersin Kantar. Chin. Phys. B, 2015, 24(10): 107501.
[15] Ferrofluid nucleus phase transitions in an external uniform magnetic field
B. M. Tanygin, S. I. Shulyma, V. F. Kovalenko, M. V. Petrychuk. Chin. Phys. B, 2015, 24(10): 104702.
No Suggested Reading articles found!