Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 067301    DOI: 10.1088/1674-1056/25/6/067301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Topological charge pump by surface acoustic waves

Yi Zheng(郑一), Shi-Ping Feng(冯世平), Shi-Jie Yang(杨师杰)
Department of Physics, Beijing Normal University, Beijing 100875, China
Abstract  

Quantized electron pumping by the surface acoustic wave across barriers created by a sequence of split metal gates is interpreted from the viewpoint of topology. The surface acoustic wave serves as a one-dimensional periodical potential whose energy spectrum possesses the Bloch band structure. The time-dependent phase plays the role of an adiabatic parameter of the Hamiltonian which induces a geometrical phase. The pumping currents are related to the Chern numbers of the filled bands below the Fermi energy. Based on this understanding, we predict a novel effect of quantized but non-monotonous current plateaus simultaneously pumped by two homodromous surface acoustic waves.

Keywords:  quantized pumping      surface acoustic wave      topological band structure  
Received:  22 September 2015      Revised:  03 March 2016      Published:  05 June 2016
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  73.21.Hb (Quantum wires)  
  72.50.+b (Acoustoelectric effects)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11374036) and the National Basic Research Program of China (Grant No. 2012CB821403).

Corresponding Authors:  Shi-Jie Yang     E-mail:  yangshijie@tsinghua.org.cn

Cite this article: 

Yi Zheng(郑一), Shi-Ping Feng(冯世平), Shi-Jie Yang(杨师杰) Topological charge pump by surface acoustic waves 2016 Chin. Phys. B 25 067301

[1] Wixforth A, Scriba J, Wassermeier M, Kotthaus J P, Weimann G and Schlapp W 1989 Phys. Rev. B 40 7874
[2] Barnes C, Shilton J and Robinson A 2000 Phys. Rev. B 62 8410
[3] Shilton J, Talyanskii V, Pepper M, Ritchie D, Frost J, Ford C, Smith C and Jones G 1996 J. Phys.: Condens. Matter 8 L531
[4] Maksym P A 2000 Phys. Rev. B 61 4727
[5] Robinson A M and Barnes C H W 2001 Phys Rev. B 63 165418
[6] Chen X S. and Gao J 2010 Solid State Commun. 150 91
[7] Galperin Y M, Entin-Wohlman O and Levinson Y 2001 Phys. Rev. B 63 153309
[8] Ahlers F J, Fletcher N E, Ebbecke J and Janssen T J B M 2004 Curr. Appl. Phys. 4 529
[9] Aharony A and Entin-Wohlman O 2002 Phys. Rev. B 65 241401
[10] Kashcheyevs V, Aharony A and Entin-Wohlman O 2004 Eur. Phys. J. B-Condens. Matter and Complex Systems 39 385
[11] Lang L J, Cai X and Chen S 2012 Phys. Rev. Lett. 108 220401
[12] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[13] Zheng Y J, Song J T and Li Y X 2016 Chin. Phys. B 25 037301
[14] Liu Y, Zhao J Z Yu L, et al. 2015 Chin. Phys. Lett. 32 067303
[15] Wray L A, Xu S Y, Xia Y, Hor Y S, Qian D, Fedorov A V, Lin H, Bansil A, Cava R J and Hasan M Z 2010 Nat. Phys. 6 855
[16] Kitagawa T, Berg E, Rudner M and Demler E 2010 Phys. Rev. B 82 235114
[17] Meidan D, Micklitz T and Brouwer P W 2010 Phys. Rev. B 82 161303
[18] Wang L, Troyer M and Dai X 2013 Phys. Rev. Lett. 111 026802
[19] Zheng Y and Yang S J 2014 Physica B 454 93
[20] Leek P, Buitelaar M, Talyanskii V, Smith C, Anderson D, Jones G, Wei J and Cobden D 2005 Phys. Rev. Lett. 95 256802
[21] Connolly M, Chiu K, Giblin S, Kataoka M, Fletcher J, Chua C, Griffiths J, Jones G, Fal'Ko V and Smith C 2013 Nat. Nanotechnol. 8 417
[22] Thouless D J 1983 Phys. Rev. B 27 6083
[23] Gumbs G, Aïzin G and Pepper M 1999 Phys. Rev. B 60 13954
[24] Nakahara M 2003 Geometry, Topology and Physics, 2nd edn. (London: Institute of Physics Publishing) pp. 428-437
[25] Berry M V 1984 Proc. Royal Soc. Lond. A: Mathematical and Physical Sciences 392 45
[26] Wang Z C, Li L and Gao J 2004 Phys. Lett. A 331 337
[27] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[28] Flensberg K, Niu Q and Pustilnik M 1999 Phys. Rev. B 60 R16291
[29] Pustilnik M, Flensberg K and Niu Q 2000 J. Low Temp. Phys. 118 571
[30] Fletcher N, Ebbecke J, Janssen T, Ahlers F, Pepper M, Beere H and Ritchie D 2003 Phys. Rev. B 68 245310
[31] Shabani J, Kim Y, Lutchyn R and Nayak C 2014 APS Meeting Abstracts 1 50003
[32] Bloch I 2005 Nat. Phys. 1 23
[1] Influence of the anisotropy on the magneto-acoustic response of magnetic surface acoustic wave resonators
Yawei Lu(鲁亚巍), Wenbin Hu(胡文彬), Wan Liu(刘婉), Feiming Bai(白飞明). Chin. Phys. B, 2020, 29(6): 067504.
[2] Fabrication and characterization of one-port surface acoustic wave resonators on semi-insulating GaN substrates
Xue Ji(吉雪), Wen-Xiu Dong(董文秀), Yu-Min Zhang(张育民), Jian-Feng Wang(王建峰), Ke Xu(徐科). Chin. Phys. B, 2019, 28(6): 067701.
[3] Nondestructive determination of film thickness with laser-induced surface acoustic waves
Xiao Xia(肖夏), Kong Tao(孔涛), Qi Hai Yang(戚海洋), Qing Hui Quan(秦慧全). Chin. Phys. B, 2018, 27(9): 096802.
[4] Propagations of Rayleigh and Love waves in ZnO films/glass substrates analyzed by three-dimensional finite element method
Yan Wang(王艳), Ying-Cai Xie(谢英才), Shu-Yi Zhang(张淑仪), Xiao-Dong Lan(兰晓东). Chin. Phys. B, 2017, 26(8): 087703.
[5] Transparent ZnO/glass surface acoustic wave based high performance ultraviolet light sensors
Wang Wen-Bo, Gu Hang, He Xing-Li, Xuan Wei-Peng, Chen Jin-Kai, Wang Xiao-Zhi, Luo Ji-Kui. Chin. Phys. B, 2015, 24(5): 057701.
[6] Influence of roughness on the detection of mechanical characteristics of low-k film by the surface acoustic waves
Xiao Xia, Tao Ye, Sun Yuan. Chin. Phys. B, 2014, 23(10): 106803.
[7] Influence of adhesive layer properties on laser-generated ultrasonic waves in thin bonded plates
Sun Hong-Xiang, Xu Bai-Qiang, Zhang Hua, Gao Qian, Zhang Shu-Yi. Chin. Phys. B, 2011, 20(1): 014302.
[8] Investigation of titanium nitride coating by broadband laser ultrasonic spectroscopy
Gao Wei-Min, Christ Glorieux, Walter Lauriks, Jan Thoen. Chin. Phys. B, 2002, 11(2): 132-138.
No Suggested Reading articles found!