Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 060703    DOI: 10.1088/1674-1056/25/6/060703
GENERAL Prev   Next  

Numerical analysis of quantitative measurement of hydroxyl radical concentration using laser-induced fluorescence in flame

Shuang Chen(陈爽)1,2, Tie Su(苏铁)2, Yao-Bang Zheng(郑尧邦)2, Li Chen(陈力)2, Ting-Xu Liu(刘亭序)2, Ren-Bing Li(李仁兵)2, Fu-Rong Yang(杨富荣)1,2
1 Science and Technology on Scramjet Laboratory, China Aerodynamics Research and Development Center, Hypervelocity Aerodynamics Institute, Mianyang 621000, China;
2 China Aerodynamics Research and Development Center, Mianyang 621000, China
Abstract  

The aim of the present work is to quantitatively measure the hydroxyl radical concentration by using LIF (laser-induced fluorescence) in flame. The detailed physical models of spectral absorption lineshape broadening, collisional transition and quenching at elevated pressure are built. The fine energy level structure of the OH molecule is illustrated to understand the process with laser-induced fluorescence emission and others in the case without radiation, which include collisional quenching, rotational energy transfer (RET), and vibrational energy transfer (VET). Based on these, some numerical results are achieved by simulations in order to evaluate the fluorescence yield at elevated pressure. These results are useful for understanding the real physical processes in OH-LIF technique and finding a way to calibrate the signal for quantitative measurement of OH concentration in a practical combustor.

Keywords:  laser-induced fluorescence      hydroxyl radical      quenching      quantitative measurement  
Received:  23 September 2015      Revised:  15 February 2016      Accepted manuscript online: 
PACS:  07.60.Rd (Visible and ultraviolet spectrometers)  
  33.80.-b (Photon interactions with molecules)  
  42.62.-b (Laser applications)  
  42.62.Fi (Laser spectroscopy)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11272338) and the Fund from the Science and Technology on Scramjet Key Laboratory, China (Grant No. STSKFKT2013004).

Corresponding Authors:  Shuang Chen     E-mail:  chenshuang827@gamil.com

Cite this article: 

Shuang Chen(陈爽), Tie Su(苏铁), Yao-Bang Zheng(郑尧邦), Li Chen(陈力), Ting-Xu Liu(刘亭序), Ren-Bing Li(李仁兵), Fu-Rong Yang(杨富荣) Numerical analysis of quantitative measurement of hydroxyl radical concentration using laser-induced fluorescence in flame 2016 Chin. Phys. B 25 060703

[1] Seitzman J M and Hanson R K 1993 Planar Fluorescence Imaging in Gases (London: Academic Press) p. 385
[2] Pfefferle L D, Griffin T A and Winter M 1998 Appl. Opt. 27 3197
[3] BesslerWG, Schulz C, Lee T, Jeffries J B and Hanson R K 2003 Appl. Opt. 42 4922
[4] McMillin B K, Palmer J L and Hanson R K 1993 Appl. Opt. 32 7532
[5] Lee M P, McMillin B K, Palmer J L and Hanson R K 1992 J. Propulsion Power 8 729
[6] Kohse-Höinghaus K 1994 Prog. Energy Combust. Sci. 20 203
[7] Paul P H 1994 J. Quantum Spectrosc. Radiat. Transfer 51 511
[8] Bailey A E, Heard D E, Henderson D A and Paul P H 1999 Chem. Phys. Lett. 302 132
[9] Carter C D, Salmon J T, King G B and Laurendeau N M 1987 Appl. Opt. 26 4551
[10] Desgroux P, Domingues E and Cottereau M J 1992 Appl. Opt. 31 2831
[11] Köllner M, Monkhouse P and Wolfrum J 1990 Chem. Phys. Lett. 168 355
[12] Matynia A, Idir M, Molet J, Roche C, de Persis S and Pillier L 2012 Appl. Phys. B: Lasers Opt. 108 393
[13] Arnold A, Bombach R, Käppeli B and Schlegel A 1997 Appl. Phys. B: Lasers Opt. 64 579
[14] Yin Z, Adamovich I V and Lempert W R 2013 Proc. Combust. Inst. 34 3249
[15] Yin Z Y, Carter C D and Lempert W R 2014 Appl. Phys. B 117 707
[16] Matynia A, Molet J, Roche C, Idir M, de Persis S and Pillier L 2012 Combust. Flame 159 3300
[17] Schießl R, Maas U, Hoffmann A, Wolfrum J and Schulz C 2004 Appl. Phys. B: Lasers Opt. 79 759
[18] Kienle R, LeeMP and Kohse-Höinghaus K 1996 Appl. Phys. B: Lasers Opt. 62 583
[19] Battles B E and Hanson R K 1995 J. Quantun Spectrosc. Radiat. Transfer 54 521
[20] Rahmann U, Bulter A, Lenhard U, Dusing R, Markus D, Brockhinke A and Kohse-Höinghaus K, “LASKIN-A Simulation Program for Time-Resolved LIF-Spectra”, Internal Report, University of Bielefeld, Faculty of Chemistry, Physical Chemistry I http://pc1.uni-bielefeld.de/~textasciitilde laskin
[21] Herzberg G 1950 Molecular spectra and molecular structure I: Spectra of diatomic molecules, 2nd edn. (Toronto: D. van Nostrand Company Inc.)
[22] Singla G, Scouflaire P, Rolon C and Candel S 2006 Combust. Flame 144 151
[23] Rea E C, Chang A Y and Hanson R K 1989 J. Quantum Spectrosc. Radiat. Transfer 41 29
[24] Hwang S M, Kojima J N, Nguyen Q V and Rabinowitz M J 2008 J. Quantun Spectrosc. Radiat. Transfer 109 2715
[25] Battles B E and Hanson R K 1995 J. Quantun Spectrosc. Radiat. Transfer 54 521
[26] Kessler W J, Allen M G and Davis S J 1993 J. Quantun Spectrosc. Radiat. Transfer 49 107
[27] Atakan B, Heinze J and Meier U E 1997 Appl. Phys. B: Lasers Opt. 64 585
[28] Luque J and Crosley D R 1999 “LIFBASE”, SRI International Report MP 99-009
[29] Garland N L and Crosley D R 1986 Proc. Combust. Inst. 21 1693
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[3] Ultrabroadband mid-infrared emission from Cr2+:ZnSe-doped chalcogenide glasses prepared via hot uniaxial pressing and melt-quenching
Ke-Lun Xia(夏克伦), Guang Jia(贾光), Hao-Tian Gan(甘浩天), Yi-Ming Gui(桂一鸣), Xu-Sheng Zhang(张徐生), Zi-Jun Liu(刘自军), and Xiang Shen(沈祥). Chin. Phys. B, 2021, 30(9): 094208.
[4] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[5] Absorption, quenching, and enhancement by tracer in acetone/toluene laser-induced fluorescence
Guang Chang(常光), Xin Yu(于欣), Jiangbo Peng(彭江波), Yang Yu(于杨), Zhen Cao(曹振), Long Gao(高龙), Minghong Han(韩明宏), and Guohua Wu(武国华). Chin. Phys. B, 2020, 29(12): 124212.
[6] Large-scale control of enhancement and quenching of photoluminescence for ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution
Shaoyi Yin(殷少轶), Liming Liao(廖李明), Song Luo(罗松), Zhe Zhang(张喆), Xiaoyu Zhang(张晓宇), Jian Lu(鹿建), Zhanghai Chen(陈张海). Chin. Phys. B, 2019, 28(5): 057803.
[7] Effect of sintering temperature on luminescence properties of borosilicate matrix blue-green emitting color conversion glass ceramics
Qiao-Yu Zheng(郑巧瑜), Yang Li(李杨), Wen-Juan Wu(吴文娟), Ming-Ming Shi(石明明), Bo-Bo Yang(杨波波), Jun Zou(邹军). Chin. Phys. B, 2019, 28(10): 108102.
[8] Frequency response range of terahertz pulse coherent detection based on THz-induced time-resolved luminescence quenching
Man Zhang(张曼), Zhen-Gang Yang(杨振刚), Jin-Song Liu(刘劲松), Ke-Jia Wang(王可嘉), Jiao-Li Gong(龚姣丽), Sheng-Lie Wang(汪盛烈). Chin. Phys. B, 2018, 27(6): 060204.
[9] Absolute density measurement of nitrogen dioxide with cavity-enhanced laser-induced fluorescence
Zheng-Hai Yang(杨正海), Yong-Cheng Yang(杨永成), Lian-Zhong Deng(邓联忠), Jian-Ping Yin(印建平). Chin. Phys. B, 2018, 27(10): 100601.
[10] Effect of supply voltage and body-biasing on single-event transient pulse quenching in bulk fin field-effect-transistor process
Jun-Ting Yu(于俊庭), Shu-Ming Chen(陈书明), Jian-Jun Chen(陈建军), Peng-Cheng Huang(黄鹏程), Rui-Qiang Song(宋睿强). Chin. Phys. B, 2016, 25(4): 049401.
[11] Quantitative measurement of hydroxyl radical (OH) concentration in premixed flat flame by combining laser-induced fluorescence and direct absorption spectroscopy
Shuang Chen(陈爽), Tie Su(苏铁), Zhong-Shan Li(李中山), Han-Chen Bai(白菡尘), Bo Yan(闫博), Fu-Rong Yang(杨富荣). Chin. Phys. B, 2016, 25(10): 100701.
[12] LIF diagnostics of hydroxyl radical in a methanol containing atmospheric-pressure plasma jet
Mu-Yang Qian(钱沐杨), San-Qiu Liu(刘三秋), Xue-Kai Pei(裴学凯), Xin-Pei Lu(卢新培), Jia-Liang Zhang(张家良), De-Zhen Wang(王德真). Chin. Phys. B, 2016, 25(10): 105205.
[13] Detection efficiency characteristics of free-running InGaAs/InP single photon detector using passive quenching active reset IC
Fu Zheng(郑福), Chao Wang(王超), Zhi-Bin Sun(孙志斌), Guang-Jie Zhai(翟光杰). Chin. Phys. B, 2016, 25(1): 010306.
[14] Exploring photocurrent output from donor/acceptor bulk-heterojunctions by monitoring exciton quenching
Wang Xin-Ping (王新平), He Zhi-Qun (何志群), Liang Chun-Jun (梁春军), Qiu Hai-An (邱海安), Jing Xi-Ping (荆西平). Chin. Phys. B, 2015, 24(6): 063301.
[15] Quantitative measurements of one-dimensional OH absolute concentration profiles in a methane/air flat flame by bi-directional laser-induced fluorescence
Yu Xin (于欣), Yang Zhen (杨振), Peng Jiang-Bo (彭江波), Zhang Lei (张蕾), Ma Yu-Fei (马欲飞), Yang Chao-Bo (杨超博), Li Xiao-Hui (李晓晖), Sun Rui (孙锐). Chin. Phys. B, 2015, 24(11): 114204.
No Suggested Reading articles found!