Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 057103    DOI: 10.1088/1674-1056/25/5/057103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study of strain effect on the formation and electronic structures of oxygen vacancy in SrFeO2

Wei Zhang(张玮)1, Jie Huang(黄洁)2
1. Physics Group of Department of Criminal Science and Technology, Nanjing Forest Police College, Nanjing 210023, China;
2. Department of Physics, Nanjing Normal University, Nanjing 210023, China
Abstract  Motivated by recent experimental observations of metallic conduction in the quasi-two-dimensional SrFeO2, we study the epitaxial strain effect on the formation and electronic structures of oxygen vacancy (Vo) by first-principles calculations. The bulk SrFeO2 is found to have the G-type antiferromagnetic ordering (G-AFM) at zero strain, which agrees with the experiment. Under compressive strain the bulk SrFeO2 keeps the G-AFM and has the trend of Mott insulator-metal transition. Different from most of the previous similar work about the strain effect on Vo, both the tensile strain and the compressive strain enhance the Vo formation. It is found that the competitions between the band energies and the electrostatic interactions are the dominant mechanisms in determining the Vo formation. We confirm that the Vo in SrFeO2 would induce the n-type conductivity where the donor levels are occupied by the delocalized dx2-y2 electrons. It is suggested that the vanishing of n-type conductivity observed by the Hall measurement on the strained films are caused by the shift of donor levels into the conduction band. These results would provide insightful information for the realization of metallic conduction in SrFeO2.
Keywords:  first-principles calculations      strain      oxygen vacancy      electronic structure     
Received:  04 December 2015      Published:  05 May 2016
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  61.72.jd (Vacancies)  
  71.55.-i (Impurity and defect levels)  
  75.50.Ee (Antiferromagnetics)  
Fund: Project supported by the Creative Plan Project of Nanjing Forest Police College, China (Grant Nos. 201512213045xy and 201512213007x).
Corresponding Authors:  Wei Zhang     E-mail:  zhangw@nfpc.edu.cn

Cite this article: 

Wei Zhang(张玮), Jie Huang(黄洁) First-principles study of strain effect on the formation and electronic structures of oxygen vacancy in SrFeO2 2016 Chin. Phys. B 25 057103

[1] Tsujimoto Y, Tassel C, Hayashi N, Watanabe T, Kageyama H, Yoshimura K, Takano M, Ceretti M, Ritter C and Paulus W 2007 Nature 450 1062
[2] Inoue S, Kawai M, Shimakawa Y, Mizumaki M, Kawamura N, Watanabe T, Tsujimoto Y, Kageyama H and Yoshimura K 2008 Appl. Phys. Lett. 92 161911
[3] Wells A F 1975 Structural Inorganic Chemistry (Oxford: Oxford University Press)
[4] Xiang H J, Wei S H and Whangbo M H 2008 Phys. Rev. Lett. 100 167207
[5] Pruneda J M, Íñiguez J, Canadell E, Kageyama H and Takano M 2008 Phys. Rev. B 78 115101
[6] Kawakami T, Tsujimoto Y, Kageyama H, Chen X Q, Fu C L, Tassel C, Kitada A, Suto S, Hirama K, Sekiya Y, Makino Y, Okada T, Yagi T, Hayashi N, Yoshimura K, Nasu S, Podloucky R and Takano M 2009 Nat. Chem. 1 371
[7] Ju S and Cai T Y 2009 Appl. Phys. Lett. 94 061902
[8] Seinberg L, Yamamoto T, Tassel C, Kobayashi Y, Hayashi N, Kitada A, Sumida Y, Watanabe T, Nishi M, Ohoyama K, Yoshimura K, Takano M, Paulus W and Kageyama H 2011 Inorg. Chem. 50 3988
[9] Romero F D, Burr S J, McGrady J E, Gianolio D, Cibin G and Hayward M A 2013 J. Am. Chem. Soc. 135 1838
[10] Horigane K, Llobet A and Louca D 2014 Phys. Rev. Lett. 112 097001
[11] Lu H S, Cai T Y, Ju S and Gong C D 2015 J. Phys. Chem. C 119 17673
[12] Bouwmeester H J M 2003 Catal. Today 82 141
[13] Fleig J 2003 Annu. Rev. Mater. Res. 33 361
[14] Smith M G, Manthiram A, Zhou J, Goodenough J B and Markert J T 1991 Nature 351 549
[15] Tamura R, Kawashima N, Yamamoto T, Tassel C and Kageyama H 2011 Phys. Rev. B 84 214408
[16] Yamamoto T, Kobayashi Y, Hayashi N, Tassel C, Saito T, Yamanaka S, Takano M, Ohoyama K, Shimakawa Y, Yoshimura K and Kageyama H 2012 J. Am. Chem. Soc. 134 11444
[17] Retuerto M, Jiménz-Villacorta F, Martínez-LopeM J, Fernández-Díaz M T and Alonso J A 2011 Inorg. Chem. 50 10929
[18] Matsuyama T, Chikamatsu A, Hirose Y, Fukumura T and Hasegawa T 2011 Appl. Phys. Express 4 013001
[19] Katayama T, Chikamatsu A, Hirose Y, Kumigashira H, Fukumura T and Hasegawa T 2014 J. Phys. D: Appl. Phys. 47 135304
[20] Blöchl P E 1994 Phys. Rev. B 50 17953
[21] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[22] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[23] Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[24] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[25] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[26] de Walle C G V and Neugebauer J 2004 J. Appl. Phys. 95 3851
[27] Chikamatsu A, Matsuyama T, Hirose Y, Kumigashira H, Oshima M and Hasegawa T 2012 J. Electron Spectrosc. Relat. Phenom. 184 547
[28] Béa H, Bibes M, Barthélémy A, Bouzehouane K, Jacquet E, Khodan A, Contour J P, Fusil S, Wyczisk F, Forget A, Lebeugle D, Colson D and Viret M 2005 Appl. Phys. Lett. 87 072508
[29] Martin L W, Zhan Q, Suzuki Y, Ramesh R, Chi M F, Browning N, Mizoguchi T and Kreisel J 2007 Appl. Phys. Lett. 90 062903
[30] Wordenweber R K R, Hollmann E and Schubert J 2007 J. Appl. Phys. 102 044119
[31] Rahman M, Nie Y Z and Guo G H 2013 Inorg. Chem. 52 12529
[32] Chen W, Sun Q Q, Ding S J, Zhang D W and Wang L K 2006 Appl. Phys. Lett. 89 152904
[33] Lu Y B, Dai Y, Wei W, Zhu Y T and Huang B B 2013 Chem. Phys. Chem. 14 3916
[34] Zhao S J, Xue J M, Wang Y G and Yan S 2012 J. Appl. Phys. 111 043514
[35] Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A and van de Walle C G 2014 Rev. Mod. Phys. 86 253
[36] van de Walle C G and Janotti A 2011 Phys. Status Solidi B 248 19
[37] Aschauer U, Pfenninger R, Selbach S M, Grande T and Spaldin N A 2013 Phys. Rev. B 88 054111
[38] Zhu J, Liu F, Stringfellow G B and Wei S H 2010 Phys. Rev. Lett. 105 195503
[39] Yang Q, Cao J X, Ma Y, Zhou Y C, Jiang L M and Zhong X L 2013 J. Appl. Phys. 113 184110
[40] Ma D W, Lu Z S, Tang Y N, Li T X, Tang Z J and Yang Z X 2014 Phys. Lett. A 378 2570
[1] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[2] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[3] Evolution of electrical and magnetotransport properties with lattice strain in La0.7Sr0.3MnO3 film
Zhi-Bin Ling(令志斌), Qing-Ye Zhang(张庆业), Cheng-Peng Yang(杨成鹏), Xiao-Tian Li(李晓天), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜), Huai-Wen Yang(杨怀文), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 096802.
[4] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[5] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[6] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[7] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[8] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[9] Modulation of carrier lifetime in MoS2 monolayer by uniaxial strain
Hao Hong(洪浩), Yang Cheng(程阳), Chunchun Wu(吴春春), Chen Huang(黄琛), Can Liu(刘灿), Wentao Yu(于文韬), Xu Zhou(周旭), Chaojie Ma(马超杰), Jinhuan Wang(王金焕), Zhihong Zhang(张智宏), Yun Zhao(赵芸), Jie Xiong(熊杰), Kaihui Liu(刘开辉). Chin. Phys. B, 2020, 29(7): 077201.
[10] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[11] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[12] First-principles calculations of solute-vacancy interactions in aluminum
Sha-Sha Zhang(张莎莎), Zheng-Jun Yao(姚正军), Xiang-Shan Kong(孔祥山), Liang Chen(陈良), Jing-Yu Qin(秦敬玉). Chin. Phys. B, 2020, 29(6): 066103.
[13] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
[14] Uncovering the internal structure of five-fold twinned nanowires through 3D electron diffraction mapping
Xin Fu(付新). Chin. Phys. B, 2020, 29(6): 068101.
[15] Constraint dependence of average potential energy of a passive particle in an active bath
Simin Ye(叶思敏), Peng Liu(刘鹏), Zixuan Wei(魏子轩), Fangfu Ye(叶方富), Mingcheng Yang(杨明成), Ke Chen(陈科). Chin. Phys. B, 2020, 29(5): 058201.
No Suggested Reading articles found!