Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 056502    DOI: 10.1088/1674-1056/25/5/056502

Thermodynamic behaviour of Rashba quantum dot in the presence of magnetic field

Sukirti Gumber1, Manoj Kumar1, Pradip Kumar Jha2, Man Mohan1
1. Department of Physics & Astrophysics, University of Delhi, Delhi 110007, India;
2. Department of Physics, DDU College, University of Delhi, Delhi 110015, India
Abstract  The thermodynamic properties of an InSb quantum dot have been investigated in the presence of Rashba spin-orbit interaction and a static magnetic field. The energy spectrum and wave-functions for the system are obtained by solving the Schrodinger wave-equation analytically. These energy levels are employed to calculate the specific heat, entropy, magnetization and susceptibility of the quantum dot system using canonical formalism. It is observed that the system is susceptible to maximum heat absorption at a particular value of magnetic field which depends on the Rashba coupling parameter as well as the temperature. The variation of specific heat shows a Schottky-like anomaly in the low temperature limit and rapidly converges to the value of 2kB with the further increase in temperature. The entropy of the quantum dot is found to be inversely proportional to the magnetic field but has a direct variation with temperature. The substantial effect of Rashba spin-orbit interaction on the magnetic properties of quantum dot is observed at low values of magnetic field and temperature.
Keywords:  quantum dot      Rashba spin-orbit interaction      thermal and magnetic properties  
Received:  02 December 2015      Revised:  01 February 2016      Published:  05 May 2016
PACS:  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  75.75.-c (Magnetic properties of nanostructures)  
Fund: Project support by the University Grants Commission, India, the Department of Science and Technology, and the University Grants Commission-Basic Science Research (UGC-BSR).
Corresponding Authors:  Sukirti Gumber     E-mail:

Cite this article: 

Sukirti Gumber, Manoj Kumar, Pradip Kumar Jha, Man Mohan Thermodynamic behaviour of Rashba quantum dot in the presence of magnetic field 2016 Chin. Phys. B 25 056502

[1] Garcia J M, Medeiros-Ribeiro G, Schmidt K, Ngo T, Feng J L, Lorke A, Kotthaus J and Petroff P M 1997 Appl. Phys. Lett. 71 2014
[2] Sundaram M, Chalmers S A, Hopkins P F and Gossard A C 1991 Science 254 1326
[3] Wang L, Yang D, Hao Z B and Luo Y 2015 Chin. Phys. B 24 067303
[4] Milliron D J, Hughes S M, Cui Y, Manna L, Li J B, Wang L W and Alivisatos A P 2004 Nature 430 190
[5] Gates B D, Xu Q, Stewart M, Ryan D, Willson C G and Whitesides G M 2005 Chem. Rev. 105 1171
[6] Qin Z H 2013 Chin. Phys. B 22 098108
[7] Ito T and Okazaki S 2000 Nature 406 1027
[8] Xia Y N, Rogers J A, Paul K E and Whitesides G M 1999 Chem. Rev. 99 1823
[9] Barth J V, Costantini G and Kern K 2005 Nature 437 671
[10] Drexler H, Leonard D, Hansen W, Kotthaus J P and Petroff P M 1994 Phys. Rev. Lett. 73 2252
[11] Nilsson H A, Karlstrom O, Larsson M, Caroff P, Pedersen J N, Samuelson L, Wacker A, Wernersson L E and Xu H Q 2010 Phys. Rev. Lett. 104 186804
[12] Brunhes T, Boucaud P and Sauvage S 2000 Phys. Rev. B 61 5562
[13] Motyka M, Kudrawiec R, Misiewicz J, Hümmer M, Röbner K, Lehnhardt T, Müller M and Forchel A 2008 J. Appl. Phys. 103 113514
[14] Huynh W U, Dittmer J J and Alivisatos A P 2002 Science 295 2425
[15] Kazes M, Lewis D Y, Ebenstein Y, Mokari T and Banin U 2002 Adv. Mater. 14 317
[16] Badawi A 2015 Chin. Phys. B 24 047205
[17] Gudiksen M S, Lauhon L J, Wang J, Smith D C and Lieber C M 2002 Nature 415 617
[18] Thelander C, Mårtensson T, Björk M T, Ohlsson B J, Larsson M W, Wallenberg L R and Samuelson L 2003 Appl. Phys. Lett. 83 2052
[19] Bratschitsch R and Leitenstorfer A 2006 Nat. Mater. 5 855
[20] Voskoboynikov O, Lee C P and Tretyak O 2001 Phys. Rev. B 63 165306
[21] Governale M 2002 Phys. Rev. Lett. 89 206802
[22] Bulaev D V and Loss D 2005 Phys. Rev. B 71 205324
[23] Rashba E I 1960 Fiz. Tverd. Tela (Leningrad) 2 1224
[24] Rashba E I 1960 Sov. Phys. Solid State 2 1109
[25] Moroz A V and Barnes C H W 2000 Phys. Rev. B 61 R2464
[26] Destefani C F, Ulloa S E and Marques G E 2004 Phys. Rev. B 69 125302
[27] Bagga A, Pietiläinen P and Chakraborty T 2006 Phys. Rev B 74 033313
[28] Bai X F, Sun L L and Chi F 2015 Chin. Phys. B 24 057302
[29] Jha P K, Kumar M, Lahon S, Gumber S and Mohan M 2013 Superlatt. Microstruct. 57 11
[30] Gornik E, Lassnig R, Strasser G, Störmer H L, Gossard A C and Wiegmann W 1985 Phys. Rev. Lett. 54 1820
[31] De Groote J J S, Hornos J and Chaplik A 1994 Phys. Rev. B 46 15397
[32] Neeleshwar S, Chen C L, Tsai C B and Chen Y Y 2005 Phys. Rev. B 71 201307
[33] Diaz-Sanchez L E, Romero A H, Cardona M, Kremer R K and Gonze X 2007 Phys. Rev. Lett. 99 165504
[34] Liao Y Y 2014 Phys. Rev. A 89 022510
[35] Climente J I, Planelles J and Movilla J L 2004 Phys. Rev. B 70 081301
[36] Boyacioglu B and Chatterjee A 2012 J. Appl. Phys. 112 083514
[37] Voskoboynikov O, Bauga O, Lee C P and Tretyak O 2003 J. Appl. Phys. 94 5891
[38] Darwin C G 1931 Proc. Cambridge Philos. Soc. 27 86
[39] De Andrada e Silva E A, La Rocca G C and Bassani F 1997 Phys. Rev. B 55 16293
[40] Datta S and Das B 1990 Appl. Phys. Lett. 56 665
[41] Kane B E 1998 Nature 393 133
[42] Stano P and Fabian J 2005 Phys. Rev. B 72 155410
[1] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
[2] Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition
Yan Wang(王岩), Shuai Luo(罗帅), Haiming Ji(季海铭), Di Qu(曲迪), and Yidong Huang(黄翊东). Chin. Phys. B, 2021, 30(1): 018106.
[3] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[4] Optical absorption in asymmetrical Gaussian potential quantum dot under the application of an electric field
Xue-Chao Li(李学超), Chun-Bao Ye(叶纯宝), Juan Gao(高娟), Bing Wang(王兵). Chin. Phys. B, 2020, 29(8): 087302.
[5] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[6] Probing the Majorana bound states in a hybrid nanowire double-quantum-dot system by scanning tunneling microscopy
Jia Liu(刘佳), Ke-Man Li(李科曼), Feng Chi(迟锋), Zhen-Guo Fu(付振国), Yue-Fei Hou(侯跃飞), Zhigang Wang(王志刚), Ping Zhang(张平). Chin. Phys. B, 2020, 29(7): 077302.
[7] Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels
Mei-Na Zhang(张美娜), Yan Shao(邵龑), Xiao-Lin Wang(王晓琳), Xiaohan Wu(吴小晗), Wen-Jun Liu(刘文军), Shi-Jin Ding(丁士进). Chin. Phys. B, 2020, 29(7): 078503.
[8] Capacitive coupling induced Kondo-Fano interference in side-coupled double quantum dots
Fu-Li Sun(孙复莉), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), Yi-Jing Yan(严以京). Chin. Phys. B, 2020, 29(6): 067204.
[9] Zero-energy modes in serially coupled double quantum dots
Fu-Li Sun(孙复莉), Zhen-Hua Li(李振华), Jian-Hua Wei(魏建华). Chin. Phys. B, 2020, 29(6): 067302.
[10] Improved carrier transport in Mn:ZnSe quantum dots sensitized La-doped nano-TiO2 thin film
Shao Li(李绍), Gang Li(李刚), Li-Shuang Yang(杨丽爽), Kui-Ying Li(李葵英). Chin. Phys. B, 2020, 29(4): 046104.
[11] Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华). Chin. Phys. B, 2020, 29(3): 038104.
[12] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
[13] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[14] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[15] Molecular beam epitaxial growth of high quality InAs/GaAs quantum dots for 1.3-μ quantum dot lasers
Hui-Ming Hao(郝慧明), Xiang-Bin Su(苏向斌), Jing Zhang(张静), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(7): 078104.
No Suggested Reading articles found!