Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 037303    DOI: 10.1088/1674-1056/25/3/037303

A subwavelength metal-grating assisted sensor of Kretschmann style for investigating the sample with high refractive index

Xu-Feng Li(李旭峰)1, Wei Peng(彭伟)2, Ya-Li Zhao(赵亚丽)3, Qiao Wang(王乔)2, Ji-Lin Wei(魏计林)1
1. School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China;
2. School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China;
3. No. 33 Research Institute of China Electronics Technology Group Corporation, Taiyuan 030024, China
Abstract  In this paper, a subwavelength metal-grating assisted sensor of Kretschmann style that is capable of detecting the sample with a refractive index higher than that of the substrate is proposed. The sensor configuration is similar to the traditional Kretschmann structure, but the metal film is pattered into a grating. As a TM-polarized laser beam impinges from the substrate, a resonant dip point in reflectance curve is produced at a certain incident angle. Our studies indicate that the sensing sensitivity and resolution are affected by the grating's gap and period, and after these parameters have been optimized, a sensing sensitivity of 51.484°/RIU is obtained with a slightly changing resolution.
Keywords:  surface plasmons      sensing      finite-difference time-domain method  
Received:  30 September 2015      Revised:  24 November 2015      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61137005 and 61178067), the Science Foundation of Shanxi Province, China (Grant No. 2013021004-3/2014021021-1), the Pre-studied Project on Weapon Equipment, China (Grant No. 201262401090404), and the Specialized Research Foundation for Doctor of School, China (Grant No. 20122027).
Corresponding Authors:  Xu-Feng Li     E-mail:

Cite this article: 

Xu-Feng Li(李旭峰), Wei Peng(彭伟), Ya-Li Zhao(赵亚丽), Qiao Wang(王乔), Ji-Lin Wei(魏计林) A subwavelength metal-grating assisted sensor of Kretschmann style for investigating the sample with high refractive index 2016 Chin. Phys. B 25 037303

[1] Kretschmann E 1971 Z. Phys. 241 313
[2] Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and Gratings (Vol. 111) (Berlin, Heidelberg: Springer) pp. 1-133
[3] Lee B, Roh S and Park J 2009 Opt. Fiber. Technol. 15 209
[4] Anker J N, Hall P W, Lyandres O, Shah N C, Zhao J and van Duyne R P 2008 Nat. Mater. 7 442
[5] Jain P K and El-Sayed M A 2010 Chem. Phys. Lett. 487 153
[6] Hwang G 2009 Nature 457 618
[7] Salamon Z, Macleod H A and Tollin G 1997 Biochim. Biophys. Acta 1331 131
[8] Abrantes M, Magone M T, Boyd L F and Schuck P 2001 Anal. Chem. 73 2828
[9] Kurihara K and Suzuki K 2002 Anal. Chem. 74 696
[10] Kretschmann E and Raether H 1968 Z. Naturforschung. A 23 2135
[11] Ong B H, Yuan X, Tjin S C, Zhang J and Ng H M 2006 Sens. Actuators. B 114 1028
[12] Gupta B D and Sharma A K 2005 Sens. Actuators. B 107 40
[13] Chen X and Jiang K 2010 Opt. Express 18 1105
[14] Roh S, Chung T and Lee B 2011 Sensors 11 1565
[15] Phan Q H, Nguyen-Huu N and Lo Y L 2014 IEEE Sensors. J. 14 2938
[16] Kawata S, Ono A and Verma P 2008 Nat. Photonics 2 438
[17] Li X F, Pan S, Guo Y N, Wang Q and Zhang Y 2010 J. Opt. Soc. Am. B 27 2141
[18] Guo Y N, Li X F, Pan S, Wang Q, Wang S and Wu Y K 2012 Chin. Phys. B 21 057301
[19] Li X F, Zhang X, Guo Y N, Meng J and Wei J 2013 J. Opt. Soc. Am. B 30 229
[20] Guo K, Liu J L and Zhou K Y 2015 Chin. Phys. B 24 047301
[1] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[2] Identification of denatured and normal biological tissues based on compressed sensing and refined composite multi-scale fuzzy entropy during high intensity focused ultrasound treatment
Shang-Qu Yan(颜上取), Han Zhang(张含), Bei Liu(刘备), Hao Tang(汤昊), and Sheng-You Qian(钱盛友). Chin. Phys. B, 2021, 30(2): 028704.
[3] Compressive imaging based on multi-scale modulation and reconstruction in spatial frequency domain
Fan Liu(刘璠), Xue-Feng Liu(刘雪峰), Ruo-Ming Lan(蓝若明), Xu-Ri Yao(姚旭日), Shen-Cheng Dou(窦申成), Xiao-Qing Wang(王小庆), and Guang-Jie Zhai(翟光杰). Chin. Phys. B, 2021, 30(1): 014208.
[4] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[5] Quantum noise of a harmonic oscillator under classical feedback control
Feng Tang(汤丰), Nan Zhao(赵楠). Chin. Phys. B, 2020, 29(9): 090303.
[6] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
[7] Terahertz polarization conversion and sensing with double-layer chiral metasurface
Zi-Yang Zhang(张子扬), Fei Fan(范飞), Teng-Fei Li(李腾飞), Yun-Yun Ji(冀允允), Sheng-Jiang Chang(常胜江). Chin. Phys. B, 2020, 29(7): 078707.
[8] An image compressed sensing algorithm based on adaptive nonlinear network
Yuan Guo(郭媛), Wei Chen(陈炜), Shi-Wei Jing(敬世伟). Chin. Phys. B, 2020, 29(5): 054203.
[9] Effect of system-reservoir correlations on temperature estimation
Wen-Li Zhu(朱雯丽), Wei Wu(吴威), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(2): 020501.
[10] Compressed ghost imaging based on differential speckle patterns
Le Wang(王乐), Shengmei Zhao(赵生妹). Chin. Phys. B, 2020, 29(2): 024204.
[11] Super-resolution filtered ghost imaging with compressed sensing
Shao-Ying Meng(孟少英), Wei-Wei Shi(史伟伟), Jie Ji(季杰), Jun-Jie Tao(陶俊杰), Qian Fu(付强), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2020, 29(12): 128704.
[12] Quantitative modeling of bacterial quorum sensing dynamics in time and space
Xiang Li(李翔), Hong Qi(祁宏), Xiao-Cui Zhang(张晓翠), Fei Xu(徐飞), Zhi-Yong Yin(尹智勇), Shi-Yang Huang(黄世阳), Zhao-Shou Wang(王兆守)†, and Jian-Wei Shuai(帅建伟)‡. Chin. Phys. B, 2020, 29(10): 108702.
[13] Room temperature nonlinear mass sensing based on a hybrid spin-nanoresonator system
Jian-Yong Yang(杨建勇) and Hua-Jun Chen(陈华俊)†. Chin. Phys. B, 2020, 29(10): 107801.
[14] Twisting mode of supercoil leucine-rich domain mediates peptide sensing in FLS2–flg22–BAK1 complex
Zhi-Chao Liu(刘志超), Qin Liu(刘琴), Chan-You Chen(陈禅友), Chen Zeng(曾辰), Peng Ran(冉鹏), Yun-Jie Zhao(赵蕴杰)†, and Lei Pan(潘磊)‡. Chin. Phys. B, 2020, 29(10): 108709.
[15] Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting
Le-Yi Chen(陈乐易), Zhen-Xing Zong(宗振兴), Jin-Long Gao(高锦龙), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2019, 28(8): 083302.
No Suggested Reading articles found!