Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 027302    DOI: 10.1088/1674-1056/25/2/027302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Quantum information transfer between topological and conventional charge qubits

Jun Li(栗军) and Yan Zou(邹艳)
College of Physics and Electronic Information, Dezhou University, Dezhou 253023, China
Abstract  We propose a scheme to realize coherent quantum information transfer between topological and conventional charge qubits. We first consider a hybrid system where a quantum dot (QD) is tunnel-coupled to a semiconductor Majorana-hosted nanowire (MNW) via using gated control as a switch, the information encoded in the superposition state of electron empty and occupied state can be transferred to each other through choosing the proper interaction time to make measurements. Then we consider another system including a double QDs and a pair of parallel MNWs, it is shown that the entanglement information transfer can be realized between the two kinds of systems. We also realize long distance quantum information transfer between two quantum dots separated by an MNW, by making use of the nonlocal fermionic level formed with the pared Majorana feimions (MFs) emerging at the two ends of the MNW. Furthermore, we analyze the teleportationlike electron transfer phenomenon predicted by Tewari et al. [Phys. Rev. Lett. 100, 027001 (2008)] in our considered system. Interestingly, we find that this phenomenon exactly corresponds to the case that the information encoded in one QD just returns back to its original place during the dynamical evolution of the combined system from the perspective of quantum state transfer.
Keywords:  quantum state transfer      Majorana feimion      hybrid system  
Received:  01 September 2015      Revised:  10 October 2015      Published:  05 February 2016
PACS:  73.21.La (Quantum dots)  
  74.45.+c (Proximity effects; Andreev reflection; SN and SNS junctions)  
  73.23.Hk (Coulomb blockade; single-electron tunneling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11304031).
Corresponding Authors:  Jun Li     E-mail:  lijun@semi.ac.cn

Cite this article: 

Jun Li(栗军) and Yan Zou(邹艳) Quantum information transfer between topological and conventional charge qubits 2016 Chin. Phys. B 25 027302

[1] Kitaev A Y 2003 Ann. Phys. 303 2
[2] Parsa B and Roman M L 2011 Phys. Rev. Lett. 106 130505
[3] Martin L and Karsten F 2011 Phys. Rev. Lett. 107 210502
[4] Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
[5] Lutchyn R M, Sau J D and Sarma D S 2010 Phys. Rev. Lett. 105 077001
[6] Li J, Yu T, Lin H Q and You J Q 2014 Sci. Rep. 4 4930
[7] Tewari S, Zhang C, Sarma D S, Nayak C and Lee D H 2008 Phys. Rev. Lett. 100 027001
[8] Kitaev A Y 2001 Phys.-Usp. 44 131
[9] Bylander J, Duty T and Delsing P 2005 Natrue 434 361
[10] Gustavsson S, Leturcq R, Simovic B, Schleser R, Ihn T, Studerus P, Ensslin K, Driscoll D C and Gossard A C 2006 Phys. Rev. Lett. 96 076605
[11] Chen W, Xue Z Y, Wang Z D and Shen R 2014 Chin. Phys. B 23 030309
[12] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[13] Hassler F, Akhmerov A R, Hou C Y and Beenakker C W J 2010 New J. Phys. 12 125002
[14] Ohm C and Hassler F 2015 Phys. Rev. B 91 085406
[15] Wang P Y, Cao Y S, Gong M, Xiong G and Li X Q 2013 Europhys. Lett. 103 57016
[16] van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2002 Rev. Mod. Phys. 75 1
[17] Hayashi T, Fujisawa T, Cheong H D, Jeong Y T and Hirayama Y 2003 Phys. Rev. Lett. 91 226804
[18] van Enk S J 2005 Phys. Rev. A 72 064306
[19] Wiseman H M and Vaccaro J A 2003 Phys. Rev. Lett. 91 097902
[20] Wang P Y, Cao Y S, Gong M, Li S S and Li X Q 2014 Phys. Lett. A 378 937
[1] Enhancement of multiatom non-classical correlations and quantum state transfer in atom-cavity-fiber system
Qi-Liang He(贺启亮), Jian Sun(孙剑), Xiao-Shu Song(宋晓书), and Yong-Jun Xiao(肖勇军). Chin. Phys. B, 2021, 30(1): 010305.
[2] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[3] Quantum state transfer via a hybrid solid-optomechanical interface
Pei Pei(裴培), He-Fei Huang(黄鹤飞), Yan-Qing Guo(郭彦青), Xing-Yuan Zhang(张兴远), Jia-Feng Dai(戴佳峰). Chin. Phys. B, 2018, 27(2): 024203.
[4] Optomechanical state transfer between two distant membranes in the presence of non-Markovian environments
Jiong Cheng(程泂), Xian-Ting Liang(梁先庭), Wen-Zhao Zhang(张闻钊), Xiangmei Duan(段香梅). Chin. Phys. B, 2018, 27(12): 120302.
[5] Controlled unknown quantum operations on hybrid systems
Yong He(何勇), Ming-Xing Luo(罗明星). Chin. Phys. B, 2016, 25(12): 120304.
[6] Quantum state transfer between atomic ensembles trapped in separate cavities via adiabatic passage
Zhang Chun-Ling, Chen Mei-Feng. Chin. Phys. B, 2015, 24(7): 070310.
[7] High-dimensional quantum state transfer in a noisy network environment
Qin Wei, Li Jun-Lin, Long Gui-Lu. Chin. Phys. B, 2015, 24(4): 040305.
[8] Distributed quantum computation with superconducting qubit via LC circuit using dressed states
Wu Chao, Fang Mao-Fa, Xiao Xing, Li Yan-Ling, Cao Shuai. Chin. Phys. B, 2011, 20(2): 020305.
[9] Long-distance quantum state transfer through cavity-assisted interaction
Li Yu-Ning, Mei Feng, Yu Ya-Fei, Zhang Zhi-Ming. Chin. Phys. B, 2011, 20(11): 110305.
[10] High entanglement generation and high fidelity quantum state transfer in a non-Markovian environment
Li Yan-Ling, Fang Mao-Fa. Chin. Phys. B, 2011, 20(10): 100312.
[11] Transferring an N-atom state between two distant cavities via an optical fiber
Ma Song-She, Chen Mei-Feng. Chin. Phys. B, 2009, 18(8): 3247-3250.
[12] Quantum communication in spin star configuration
Deng Hong-Liang, Fang Xi-Ming. Chin. Phys. B, 2008, 17(2): 702-709.
No Suggested Reading articles found!