Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 020203    DOI: 10.1088/1674-1056/25/2/020203
GENERAL Prev   Next  

Solving unsteady Schrödinger equation using the improved element-free Galerkin method

Rong-Jun Cheng(程荣军)1 and Yu-Min Cheng(程玉民)2
1. Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China;
2. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China
Abstract  

By employing the improved moving least-square (IMLS) approximation, the improved element-free Galerkin (IEFG) method is presented for the unsteady Schrödinger equation. In the IEFG method, the two-dimensional (2D) trial function is approximated by the IMLS approximation, the variation method is used to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. Because the number of coefficients in the IMLS approximation is less than in the moving least-square (MLS) approximation, fewer nodes are needed in the entire domain when the IMLS approximation is used than when the MLS approximation is adopted. Then the IEFG method has high computational efficiency and accuracy. Several numerical examples are given to verify the accuracy and efficiency of the IEFG method in this paper.

Keywords:  meshless method      improved moving least-square (IMLS) approximation      improved element-free Galerkin (IEFG) method      Schrö      dinger equation  
Received:  09 July 2015      Revised:  01 November 2015      Published:  05 February 2016
PACS:  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  03.65.Ge (Solutions of wave equations: bound states)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11171208), the Natural Science Foundation of Zhejiang Province, China (Grant No. LY15A020007), the Natural Science Foundation of Ningbo City (Grant No. 2014A610028), and the K. C. Wong Magna Fund in Ningbo University, China.

Corresponding Authors:  Yu-Min Cheng     E-mail:  ymcheng@shu.edu.cn

Cite this article: 

Rong-Jun Cheng(程荣军) and Yu-Min Cheng(程玉民) Solving unsteady Schrödinger equation using the improved element-free Galerkin method 2016 Chin. Phys. B 25 020203

[1] Kivshar Y and Agrawal G P 2003 Optical Solitons : From Fibers to Photonic Crystals (New York: Academic Press)
[2] Deng Y X, Tu C H and Lu F Y 2009 Acta Phys. Sin. 58 3173 (in Chinses)
[3] Zhao L, Sui Z, Zhu Q H, Zhang Y and Zuo Y L 2009 Acta Phys. Sin. 58 4731 (in Chinses)
[4] Hasegawa A 1989 Optical Solitons in Fibers (Berlin: Springer-Verlag)
[5] Dodd R K, Eilbeck J C, Gibbon J D and Morris H C 1982 Solitons and Nonlinear Wave Equations (New York: Academic Press)
[6] Pitaevskii L P and Stringari S 2003 Bose-Einstein Condensation (Oxford: Oxford University Press)
[7] Scott A 1999 Nonlinear Science: Emergence and Dynamics of Coherent Structures (Vol. 1) (Oxford: Oxford University Press)
[8] Arnold A 1998 VLSI Design 6 313
[9] Levy M 2000 Institution of Electrical Engineers, London
[10] Tappert F D 1977 Lecture Notes in Physics (Berlin: Springer)
[11] Kopylov Y V, Popov A V and Vinogradov A V 1995 Opt. Commun. 118 619
[12] Huang W, Xu C, Chu S T and Chaudhuri S K 1992 J. Lightwave Technology 10 295
[13] Subasi M 2002 Numerical Methods for Partial Differential Equations 18 752
[14] Antoine X, Besse C and Mouysett V 2004 Math. Comput. 73 1779
[15] Kalita J C, Chhabra P and Kumar S 2006 J. Comput. Appl. Math. 197 141
[16] Dehghan M and Shokri A 2007 Comput. Math. Appl. 54 136
[17] Dehghan M 2006 Math. Comput. Simul. 71 16
[18] Dehghan M and Mirzaei D 2008 Engineering Analysis with Boundary Elements 32 747
[19] Ang W T and Ang K C 2004 Numerical Methods for Partial Differen-tial Equations 20 843
[20] Belytschko T, Krongauz Y, Organ D, Fleming M and Krysl P 1996 Comput. Method Appl. Mech. Eng. 139 3
[21] Cheng Y M and Li J H 2006 Sci. China Ser. G Phys. Mech. Astron. 49 46
[22] Cheng R J and Cheng Y M 2008 Appl. Numer. Math. 58 884
[23] Peng M J and Cheng Y M 2009 Engineering Analysis with Boundary Elements 33 77
[24] Li D M and Bai F N and Cheng Y M and Liew K M 2012 Comput. Methods Appl. Mech. Eng. 233-236 1
[25] Lancaster P and Salkauskas K 1981 Math. Comput. 37 141
[26] Cheng Y M and Chen M J 2003 Acta Mech. Sin. 35 181
[27] Cheng Y M and Peng M J 2005 Sci. China-Ser. G Phys. Mech. Astron. 48 641
[28] Liew K M, Cheng Y M and Kitipornchai S 2006 Int. J. Numer. Methods Eng. 65 1310
[29] Kitipornchai S, Liew K M and Cheng Y M 2005 Comput. Mech. 36 13
[30] Liew K M, Cheng Y M and Kitipornchai S 2005 Int. J. Numer. Methods Eng. 64 1610
[31] Zhang Z, Liew K M and Cheng Y M 2008 Engineering Analysis with Boundary Elements 32 100
[32] Zhang Z, Liew K M, Cheng Y M and Li Y Y 2008 Engineering Anal-ysis with Boundary Elements 32 241
[33] Zhang Z, Wang J F, Cheng Y M and Liew K M 2013 Sci. China-Phys. Mech. Astron. 56 1568
[34] Zhang Z, Cheng Y M and Liew K M 2013 Engineering Analysis withBoundary Elements 37 1576
[35] Ren H P, Cheng Y M and Zhang W 2009 Chin. Phys. B 18 4065
[36] Ren H P, Cheng Y M and Zhang W 2010 Sci. China-Ser. G Phys. Mech. Astron. 53 758
[37] Ren H P and Cheng Y M 2011 Int. J. Appl. Mech. 3 735
[38] Ren H P and Cheng Y M 2012 Engineering Analysis with Boundary Elements 36 873
[39] Sun F X, Wang J F, Cheng Y M and Huang A X 2015 Appl. Numer. Math. 98 79
[40] Cheng R J and Liew K M 2012 Engineering Analysis with Boundary Elements 36 203
[41] Cheng R J and Liew K M 2009 Comput. Mech. 45 1
[42] Cheng R J and Liew K M 2012 Engineering Analysis with Boundary Elements 36 1322
[43] Cheng R J and Liew K M 2012 Comput. Method Appl. Mech. Eng. 245-246 132
[44] Wang J F, Sun F X and Cheng Y M 2012 Chin. Phys. B 21 090204
[45] Wang J F, Wang J F, Sun F X and Cheng Y M 2013 Int. J. Comput. Methods 10 1350043
[46] Sun F X, Wang J F, Cheng Y M and Huang A X 2015 Appl. Numer. Math. 98 79
[47] Chen L and Cheng Y M 2010 Sci. China-Ser. G Phys. Mech. Astron. 53 954
[48] Chen L and Cheng Y M 2010 Chin. Phys. B 19 090204
[49] Chen L, Cheng Y M and Ma H P 2015 Comput. Mech. 55 591
[50] Peng M J, Liu P and Cheng Y M 2009 Int. J. Appl. Mech. 1 367
[51] Peng M J, Li D M and Cheng Y M 2011 Engineering Structure 33 127
[52] Li D M, Peng M J and Cheng Y M 2011 Sci. China-Ser. G Phys. Mech. Astron. 41 1003
[53] Cheng Y M, Li R X and Peng M J 2012 Chin. Phys. B 21 090205
[54] Bai F N, Li D M, Wang J F and Cheng Y M 2012 Chin. Phys. B 21 020204
[55] Cheng Y M, Liu C, Bai F N and Peng M J 2015 Chin. Phys. B 24 100202
[56] Deng Y J, Liu C, Peng M J and Cheng Y M 2015 Int. J. Appl. Mech. 7 1550017
[1] Novel traveling wave solutions and stability analysis of perturbed Kaup-Newell Schrödinger dynamical model and its applications
Xiaoyong Qian(钱骁勇), Dianchen Lu(卢殿臣), Muhammad Arshad, and Khurrem Shehzad. Chin. Phys. B, 2021, 30(2): 020201.
[2] Four-soliton solution and soliton interactions of the generalized coupled nonlinear Schrödinger equation
Li-Jun Song(宋丽军), Xiao-Ya Xu(徐晓雅), Yan Wang(王艳). Chin. Phys. B, 2020, 29(6): 064211.
[3] Trajectory engineering via a space-fractional Schrödinger equation with dynamic linear index potential
Yunji Meng(孟云吉), Youwen Liu(刘友文), Haijiang Lv(吕海江). Chin. Phys. B, 2020, 29(5): 054201.
[4] Gravity-capillary waves modulated by linear shear flow in arbitrary water depth
Shaofeng Li(李少峰), Jinbao Song(宋金宝), and Anzhou Cao(曹安州). Chin. Phys. B, 2020, 29(12): 124702.
[5] Rational solutions and interaction solutions for (2 + 1)-dimensional nonlocal Schrödinger equation
Mi Chen(陈觅) and Zhen Wang(王振). Chin. Phys. B, 2020, 29(12): 120201.
[6] Efficient solver for time-dependent Schrödinger equation with interaction between atoms and strong laser field
Sheng-Peng Zhou(周胜鹏), Ai-Hua Liu(刘爱华), Fang Liu(刘芳), Chun-Cheng Wang(王春成), Da-Jun Ding(丁大军). Chin. Phys. B, 2019, 28(8): 083101.
[7] Dynamics of Airy beams in parity-time symmetric optical lattices
Rui-Hong Chen(陈睿弘), Wei-Yi Hong(洪伟毅). Chin. Phys. B, 2019, 28(5): 054202.
[8] Quantum photodetachment of hydrogen negative ion in a harmonic potential subjected to static electric field
Azmat Iqbal, Kiran Humayun, Sana Maqsood, Saba Jawaid, Afaq Ahmad, Amin Ur Rahman, Bakht Amin Bacha. Chin. Phys. B, 2019, 28(2): 023201.
[9] Dynamics of three nonisospectral nonlinear Schrödinger equations
Abdselam Silem, Cheng Zhang(张成), Da-Jun Zhang(张大军). Chin. Phys. B, 2019, 28(2): 020202.
[10] Dark and multi-dark solitons in the three-component nonlinear Schrödinger equations on the general nonzero background
Zhi-Jin Xiong(熊志进), Qing Xu(许庆), Liming Ling(凌黎明). Chin. Phys. B, 2019, 28(12): 120201.
[11] Soliton excitations and interaction in alpha helical protein with interspine coupling in modified nonlinear Schrödinger equation
Ming-Ming Li(李明明), Cheng-Lai Hu(胡成来), Jun Wu(吴俊), Xian-Jing Lai(来娴静), Yue-Yue Wang(王悦悦). Chin. Phys. B, 2019, 28(12): 120502.
[12] A nonlinear Schrödinger equation for gravity waves slowly modulated by linear shear flow
Shaofeng Li(李少峰), Juan Chen(陈娟), Anzhou Cao(曹安州), Jinbao Song(宋金宝). Chin. Phys. B, 2019, 28(12): 124701.
[13] Role of Bloch oscillation in high-order harmonic generation from periodic structure
Lu Liu(刘璐), Jing Zhao(赵晶), Jian-Min Yuan(袁建民), Zeng-Xiu Zhao(赵增秀). Chin. Phys. B, 2019, 28(11): 114205.
[14] Solitons in nonlinear systems and eigen-states in quantum wells
Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营), Wen-Li Yang(杨文力). Chin. Phys. B, 2019, 28(1): 010501.
[15] Quantum pseudodots under the influence of external vector and scalar fields
M Eshghi, S M Ikhdair. Chin. Phys. B, 2018, 27(8): 080303.
No Suggested Reading articles found!