Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 128104    DOI: 10.1088/1674-1056/25/12/128104
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Influences of annealing on structural and compositional properties of Al2O3 thin films grown on 4H-SiC by atomic layer deposition

Li-Xin Tian(田丽欣), Feng Zhang(张峰), Zhan-Wei Shen(申占伟), Guo-Guo Yan(闫果果), Xing-Fang Liu(刘兴昉), Wan-Shun Zhao(赵万顺), Lei Wang(王雷), Guo-Sheng Sun(孙国胜), Yi-Ping Zeng(曾一平)
Key Laboratory of Semiconductor Material Sciences, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  

Annealing effects on structural and compositional performances of Al2O3 thin films on 4H-SiC substrates are studied comprehensively. The Al2O3 films are grown by atomic layer deposition through using trimethylaluminum and H2O as precursors at 300℃, and annealed at various temperatures in ambient N2 for 1 min. The Al2O3 film transits from amorphous phase to crystalline phase as annealing temperature increases from 750℃ to 768℃. The refractive index increases with annealing temperature rising, which indicates that densification occurs during annealing. The densification and grain formation of the film upon annealing are due to crystallization which is relative with second-nearest-neighbor coordination variation according to the x-ray photoelectron spectroscopy (XPS). Although the binding energies of Al 2p and O 1s increase together during crystallization, separations between Al 2p and O 1s are identical between as-deposited and annealed sample, which suggests that the nearest-neighbour coordination is similar.

Keywords:  atomic layer deposition      annealing      transition      4H-SiC  
Received:  25 March 2016      Revised:  08 August 2016      Accepted manuscript online: 
PACS:  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
  68.55.-a (Thin film structure and morphology)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2015CB759600), the National Natural Science Foundation of China (Grant Nos. 61474113, 61574140, and 61274007), and the Beijing Nova Program, China (Grant No. xx2016071), and the CAEP Microsystem and THz Science and Technology Foundation (Grant No. CAEPMT201502).

Corresponding Authors:  Feng Zhang     E-mail:  fzhang@semi.ac.cn

Cite this article: 

Li-Xin Tian(田丽欣), Feng Zhang(张峰), Zhan-Wei Shen(申占伟), Guo-Guo Yan(闫果果), Xing-Fang Liu(刘兴昉), Wan-Shun Zhao(赵万顺), Lei Wang(王雷), Guo-Sheng Sun(孙国胜), Yi-Ping Zeng(曾一平) Influences of annealing on structural and compositional properties of Al2O3 thin films grown on 4H-SiC by atomic layer deposition 2016 Chin. Phys. B 25 128104

[1] Baliga B J 2005 Silicon Carbide Power Devices (Singapore:World Scientific)
[2] Avice M, Diplas S, Thogersen A, Christensen J S, Grossner U, Svensson B G, Nilsen O, Fjellvag H and Watts J F 2007 Appl. Phys. Lett. 91 052907
[3] Tanner C M, Toney M F, Lu J, Blom H O, Sawkar-Mathur M, Tafesse M A and Chang J P 2007 J. Appl. Phys. 102 104112
[4] Zhang F, Sun G, Zheng L, Liu S, Liu B, Dong L, Wang L, Zhao W, Liu X, Yan G, Tian L and Zeng Y 2013 J. Appl. Phys. 113 044112
[5] Afanasev V V, Bassler M, Pensl G and Schulz M 1997 Phys. Status Solidi A 162 321-337
[6] Lipkin L A and Palmour J W 1999 IEEE Trans. Electron Dev. 46 525
[7] Zhang X H, Domercq B, Wang X D, Yoo S, Kondo T, Wang Z L and Kippelen B 2007 Org. Electron. 8 718
[8] Puurunen R L 2005 J. Appl. Phys. 97 121301
[9] Ritala M, Leskelä M, Dekker J P, Mutsaers C, Soininen P J and Skarp J 1999 Chem. Vap. Deposition 5 7
[10] Diplas S, Avice M, Thogersen A, Christensen J S, Grossner U, Svensson B G, Nilsen O, Fjelivag H, Hinderc S and Watts J F 2008 Surf. Interface Anal. 40 822
[11] Grossner U, Servidori M, Avice M, Nilsen O, Fjellvag H, Nipoti R and Svensson B G 2007 Silicon Carbide and Related Materials 2006 556-557 683
[12] Tanner C M, Sawkar-Mathur M, Lu J, Blom H O, Toney M F and Chang J P 2007 Appl. Phys. Lett. 90 061916
[13] Jakschik S, Schroeder U, Hecht T, Gutsche M, Seidl H and Bartha J W 2003 Thin Solid Films 425 216
[14] Avice M, Grossner U, Pintilie I, Svensson B G, Servidori M, Nipoti R, Nilsen O and Fjellvag H 2007 J. Appl. Phys. 102 054513
[15] F M J, J C and C k R 1995 Handbook of X-ray Photoelectron Spectroscopy:a reference book of standard spectra for identification and interpretation of XPS data (Minnesota:Physical Electronics, Inc.)
[16] Cimalla V, Baeumler M, Kirste L, Prescher M, Christian B, Passow T, Benkhelifa F, Bernhardt F, Eichapfel G, Himmerlich M, Krischok S and Pezoldt J 2014 Mater. Sci. Appl. 5 628
[17] Shih K K 1994 J. Vac. Sci. Technol. A 12 321
[18] Gladstone J H and Dale T P 1863 Philos. Trans. R. Soc. London 153 317
[19] Ott A W, Klaus J W, Johnson J M and George S M 1997 Thin Solid Films 292 135
[20] Qin H, Sutter P, Zhou G and Jacobson N 2014 J. Am. Ceram. Soc. 97 2762
[21] Zhang L, Jiang H C, Liu C, Dong J W and Chow P 2007 J. Phys. D:Appl. Phys. 40 3707
[22] Zhao C, Roebben G, Bender H, Young E, Haukka S, Houssa M, Naili M, De Gendt S, Heyns M and Van Der Biest O 2001 Microelectron. Reliab. 41 995
[23] Banakh O, Schmid P E, Sanjines R and Levy E 2003 Surf. Coat. Tech. 163 57
[24] Ishihara M, Li S J, Yumoto H, Akashi K and Ide Y 1998 Thin Solid Films 316 152
[25] Tanner C M, Perng Y C, Frewin C, Saddow S E and Chang J P 2007 Appl. Phys. Lett. 91 203510
[26] Yang W S, Kim Y K, Yang S Y, Choi J H, Park H S, Lee S I and Yoo J B 2000 Surf. Coat. Tech. 131 79
[27] Jung Y C, Miura H, Ohtani K and Ishida M 1999 J. Cryst. Growth 196 88
[28] Kim J B, Kwon D R, Chakrabarti K, Lee C, Oh K Y and Lee J H 2002 J. Appl. Phys. 92 6739
[29] Snijders P C, Jeurgens L P H and Sloof W G 2005 Surf. Sci. 589 98
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[3] Transition frequencies between 2S and 2P states of lithium-like ions
Liming Wang(王黎明), Tongtong Liu(刘仝彤), Weiqing Yang(杨为青), and Zong-Chao Yan. Chin. Phys. B, 2023, 32(3): 033102.
[4] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[5] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[6] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[7] Transition-edge sensors using Mo/Au/Au tri-layer films
Hubing Wang(王沪兵), Yue Lv(吕越), Dongxue Li(李冬雪), Yue Zhao(赵越), Bo Gao(高波), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(2): 028501.
[8] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[9] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[10] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[11] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[12] Fabrication of honeycomb AuTe monolayer with Dirac nodal line fermions
Qin Wang(汪琴), Jie Zhang(张杰), Jierui Huang(黄杰瑞), Jinan Shi(时金安), Shuai Zhang(张帅), Hui Guo(郭辉), Li Huang(黄立), Hong Ding(丁洪), Wu Zhou(周武), Yan-Fang Zhang(张艳芳), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(1): 016102.
[13] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[14] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[15] Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟). Chin. Phys. B, 2022, 31(9): 093101.
No Suggested Reading articles found!