Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 124208    DOI: 10.1088/1674-1056/25/12/124208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Modulation instabilities in randomly birefringent two-mode optical fibers

Jin-Hua Li(李金花)1, Hai-Dong Ren(任海东)2, Shi-Xin Pei(裴世鑫)1, Zhao-Lou Cao(曹兆楼)1, Feng-Lin Xian(咸冯林)1
1. School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology(NUIST), Nanjing 210044, China;
2. Sunnypol Optoelectronics Company Limited, Hefei 231135, China
Abstract  

Modulation instabilities in the randomly birefringent two-mode optical fibers (RB-TMFs) are analyzed in detail by accounting the effects of the differential mode group delay (DMGD) and group velocity dispersion (GVD) ratio between the two modes, both of which are absent in the randomly birefringent single-mode optical fibers (RB-SMFs). New MI characteristics are found in both normal and anomalous dispersion regimes. For the normal dispersion, without DMGD, no MI exists. With DMGD, a completely new MI band is generated as long as the total power is smaller than a critical total power value, named by Pcr, which increases significantly with the increment of DMGD, and reduces dramatically as GVD ratio and power ratio between the two modes increases. For the anomalous dispersion, there is one MI band without DMGD. In the presence of DMGD, the MI gain is reduced generally. On the other hand, there also exists a critical total power (Pcr), which increases (decreases) distinctly with the increment of DMGD (GVD ratio of the two modes) but varies complicatedly with the power ratio between the two modes. Two MI bands are present for total power smaller than Pcr, and the dominant band can be switched between the low and high frequency bands by adjusting the power ratio between the two modes. The MI analysis in this paper is verified by numerical simulation.

Keywords:  modulation instability      Manakov equations      two-mode optical fibers      random birefringence  
Received:  02 August 2016      Revised:  17 September 2016      Published:  05 December 2016
PACS:  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  42.81.Gs (Birefringence, polarization)  
Fund: 

Project supported by the Natural Science Foundation of Jiangsu Provincial Universities (Grant No. 14KJB140009), the National Natural Science Foundation of China (Grant No. 11447113), and the Startup Foundation for Introducing Talent of NUIST (Grant No. 2241131301064).

Corresponding Authors:  Jin-Hua Li, Feng-Lin Xian     E-mail:  lijinhua@nuist.edu.cn;002642@nuist.edu.cn

Cite this article: 

Jin-Hua Li(李金花), Hai-Dong Ren(任海东), Shi-Xin Pei(裴世鑫), Zhao-Lou Cao(曹兆楼), Feng-Lin Xian(咸冯林) Modulation instabilities in randomly birefringent two-mode optical fibers 2016 Chin. Phys. B 25 124208

[1] Canabarro A, Santos B, de Lima Bernardo B, Moura A L, Soares W C, de Lima E, Gléria I and Lyra M L 2016 Phys. Rev. A 93 023834
[2] Zhang J, Dai X, Zhang L, Xiang Y and Li Y 2015 J. Opt. Soc. Am. B 32 1
[3] Wabnitz S and Wetzel B 2014 Phys. Lett. A 378 2750
[4] Frisquet B, Kibler B, Fatome J, Morin P, Baronio F, Conforti M, Millot G and Wabnitz S 2015 Phys. Rev. A 92 053854
[5] Zhang L, Dai X, Xiang Y and Wen S 2015 Appl. Phys. B 121 465
[6] Agrawal G P 1987 Phys. Rev. Lett. 59 880
[7] Xu Y A, Savescu M, Khan K R, Mahmood M F, Biswas A and Belic M 2016 Opt. Laser Technol. 77 177
[8] Chen S H, Baronio F, Soto-Crespo J M, Grelu P, Conforti M and Wabnitz S 2015 Phys. Rev. A 92 033847
[9] Walczak P, Randoux S and Suret P 2015 Phys. Rev. Lett. 114 143903
[10] Li J H, Chan H N, Chiang K S and Chow K W 2015 Commun. Nonlinear Sci. Numer. Simul. 28 28
[11] Yu M, McKinistrie C J and Agrawal G P 1998 J. Opt. Soc. Am. B 15 607
[12] Korobko D A, Okhntnikov O G and Zloltovskii I O 2013 J. Opt. Soc. Am. B 30 2377
[13] Tang D Y, Guo J, Song Y F, Li L, Zhao L M and Shen D Y 2014 Opt. Fiber Technol. 20 610
[14] Wei X M, Zhang C, Xu S H, Zhang Z M, Tsia K K and Wong K K Y 2014 IEEE J. Sel. Top. Quantum Electron. 20 7600207
[15] Nithyanandan K, Raja R V J, Porsezian K and Uthayakumar T 2013 Opt. Fiber Technol. 19 348
[16] Mckinstrie C J, Radic S and Xie C 2003 Opt. Express 11 2619
[17] Wang H L, Yang A J and Leng Y X 2013 Chin. Phys. B 22 074208
[18] Zhong X Q and Xiang A P 2010 Chin. Phys. Lett. 27 014203
[19] Zhong X Q, Cheng K and Xiang A P 2013 Chin. Phys. B 22 034205
[20] Armaroli A and Trillo S 2014 J. Opt. Soc. Am. B 31 551
[21] TchofoDindaand P and Porsezian K 2010 J. Opt. Soc. Am. B 27 1143
[22] Tanemura T and Kikuchi K 2003 J. Opt. Soc. Am. B 20 2502
[23] Armaroli A and Trillo S 2014 J. Opt. Soc. Am. B 31 551
[24] Millot G and Wabnitz S 2014 J. Opt. Soc. Am. B 31 2754
[25] Richardson D J, Fini J M and Nelson L E 2013 Nat. Photon. 7 354
[26] Saitoh K and Matsuo S 2016 J. Lightwave Technol. 34 55
[27] Radosavljevic A, Danicic A, Petrovic J, Maluckov A and Haziewski L 2016 J. Opt. Soc. Am. B 32 2520
[28] Sillard P, Molin D, Bigot-Astruc M, Amezcua-Correa A, de Jongh K and Achten F 2016 J. Lightwave Technol. 34 1672
[29] Rademacher G and Petermann K 2016 J. Lightwave Technol. 34 2280
[30] Hadzievski L, Maluckov A, Rubenchik A M and Turitsyn S 2015 Light:Science & Applications 4 e314
[31] Mumtaz S, Essiambre R J and Agrawal G P 2013 J. Lightwave Technol. 31 398
[32] Antonelli C, Shtaif M and Mecozzi A 2016 J. Lightwave Technol. 34 36
[33] Guasoni M 2015 Phys. Rev. A 92 033849
[34] Li J H, Chiang K S and Chow K W 2011 J. Opt. Soc. Am. B 28 1693
[35] Shafeeque Ali A K, Nithyanandan K, and Porsezian K 2015 Phys. Lett. A 379 223
[36] Shafeeque Ali A K, Nithyanandan K and Porsezian K 2016 J. Opt. 18 035102
[37] Chiang K S 1986 J. Lightwave Technol. LT-4 980
[38] Shibata N, Ohashi M, Maruyama R and Kuwaki N 2015 Opt. Rev. 22 65
[39] Rothenberg J E 1990 Phys. Rev. A 42 682
[40] Seve E and Millot G 2000 Phys. Rev. E 61 3139
[41] Ding E, Luh K and Kutz J N 2011 J. Phys. B:At. Mol. Opt. Phys. 44 065401
[42] Li J H, Chiang K S, Malomed B A and Chow K W 2012 J. Phys. B:At. Mol. Opt. Phys. 45 165404
[43] Rogers C, Malomed B A, Li J H and Chow K W 2012 J. Phys. Soc. Jpn. 81 094005
[1] Pressure dependent modulation instability in photonic crystal fiber filled with argon gas
He-Lin Wang(王河林), Ai-Jun Yang(杨爱军), XiaoLong Wang(王肖隆), Bin Wu(吴彬), Yi Ruan(阮乂). Chin. Phys. B, 2018, 27(9): 094221.
[2] Controllable optical superregular breathers in the femtosecond regime
Yang Ren(任杨), Zhan-Ying Yang(杨战营), Chong Liu(刘冲), Wen-Li Yang(杨文力). Chin. Phys. B, 2018, 27(1): 010504.
[3] Optical pulse evolution in the presence of a probe light in CW-pumped nonlinear fiber
Wei Chen(陈伟), Xue-Liang Zhang(张学亮), Xiao-Yang Hu(胡晓阳), Zhang-Qi Song(宋章启), Zhou Meng(孟洲). Chin. Phys. B, 2017, 26(6): 064206.
[4] Ultra-broadband modulation instability gain characteristics in As2S3 and As2Se3 chalcogenide glass photonic crystal fiber
He-Lin Wang(王河林), Bin Wu(吴彬), Xiao-Long Wang(王肖隆). Chin. Phys. B, 2016, 25(6): 064207.
[5] Picosecond supercontinuum generation seeded by a weak continuous wave
Li Ying, Hou Jing, Leng Jin-Yong, Wang Wen-Liang, Jiang Zong-Fu. Chin. Phys. B, 2013, 22(7): 074205.
[6] Broadband tunable optical amplification based on modulation instability characteristic of high-birefringence photonic crystal fibers
Wang He-Lin, Yang Ai-Jun, Leng Yu-Xin. Chin. Phys. B, 2013, 22(7): 074208.
[7] Impacts of higher-order dispersions and saturable nonlinearities on modulation instability in negative-refractive metamaterials
Zhong Xian-Qiong, Cheng Ke, Xiang An-Ping. Chin. Phys. B, 2013, 22(3): 034205.
[8] Phase-matching analysis of four-wave mixing induced by modulation instability in a single-mode fiber
Chen Wei, Meng Zhou, Zhou Hui-Juan. Chin. Phys. B, 2012, 21(9): 094215.
[9] Cross-phase modulation instability in optical fibres with exponential saturable nonlinearity and high-order dispersion
Zhong Xian-Qiong, Xiang An-Ping. Chin. Phys. B, 2010, 19(6): 064212.
[10] Optimization control of modulation-instability gain in photonic crystal fibres with two-zero dispersion wavelengths
Wang He-Lin, Leng Yu-Xin, Xu Zhi-Zhan. Chin. Phys. B, 2009, 18(12): 5375-5384.
[11] Density cavities generated by plasma--field interactions in the far wake region of a space vehicle
Hu Tao-Ping, Luo Qing, Li Xiao-Qing. Chin. Phys. B, 2007, 16(8): 2449-2454.
[12] Laser pulse modulation instabilities in partially stripped plasma
Hu Qiang-Lin, Liu Shi-Bing, Jiang Yi-Jian. Chin. Phys. B, 2005, 14(12): 2546-2551.
[13] Modulation instability of quasi-plane-wave optical beams in biased photorefractive-photovoltaic crystals
Zhang Yan-Peng, Lu Ke-Qing, Zhao Wei, Yang Yan-Long, Zhu Xiang-Ping, Li Jin-Ping. Chin. Phys. B, 2004, 13(12): 2077-2081.
[14] Modulation instability of femtosecond pulses in fibres with slowly decreasing dispersion
Zhang Shu-Min, Xu Wen-Cheng, Chen Wei-Cheng, Luo Ai-Ping, Guo Qi, Liu Song-Hao. Chin. Phys. B, 2002, 11(1): 39-43.
No Suggested Reading articles found!