Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 123101    DOI: 10.1088/1674-1056/25/12/123101

Lattice structures and electronic properties of WZ-CuInS2/WZ-CdS interface from first-principles calculations

Hong-Xia Liu(柳红霞)1, Fu-Ling Tang(汤富领)1, Hong-Tao Xue(薛红涛)1, Yu Zhang(张宇)1, Yu-Wen Cheng(程育汶)1, Yu-Dong Feng(冯煜东)2
1. State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Department of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China;
2. Science and Technology on Surface Engineering Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China

Using the first-principles plane-wave calculations within density functional theory, the perfect bi-layer and monolayer terminated WZ-CIS (100)/WZ-CdS (100) interfaces are investigated. After relaxation the atomic positions and the bond lengths change slightly on the two interfaces. The WZ-CIS/WZ-CdS interfaces can exist stably, when the interface bonding energies are -0.481 J/m2 (bi-layer terminated interface) and -0.677 J/m2 (monolayer terminated interface). Via analysis of the density of states, difference charge density and Bader charges, no interface state is found near the Fermi level. The stronger adhesion of the monolayer terminated interface is attributed to more electron transformations and orbital hybridizations, promoting stable interfacial bonds between atoms than those on a bi-layer terminated interface.

Keywords:  first-principles calculation      WZ-CIS/WZ-CdS interface      density of states      interface bonding energy      interface states     
Received:  25 April 2016      Published:  05 December 2016
PACS:  31.15.A- (Ab initio calculations)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
  71.22.+i (Electronic structure of liquid metals and semiconductors and their Alloys)  
  71.15.Nc (Total energy and cohesive energy calculations)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11164014 and 11364025) and the Gansu Science and Technology Pillar Program, China (Grant No. 1204GKCA057).

Corresponding Authors:  Fu-Ling Tang     E-mail:

Cite this article: 

Hong-Xia Liu(柳红霞), Fu-Ling Tang(汤富领), Hong-Tao Xue(薛红涛), Yu Zhang(张宇), Yu-Wen Cheng(程育汶), Yu-Dong Feng(冯煜东) Lattice structures and electronic properties of WZ-CuInS2/WZ-CdS interface from first-principles calculations 2016 Chin. Phys. B 25 123101

[1] He Y B, Kriegseis W, Meyer B K, Polity A and Serafin M 2003 Appl. Phys. Lett. 83 1743
[2] Wätjen J T, Scragg J J, Ericson T, Edoff M and Platzer-Björkman C 2013 Thin Solid Films 535 31
[3] Bandyopadhyaya S, Chaudhuri S and Pal A K 2000 Sol. Energy Mater. Sol. Cells 60 323
[4] Klaer J, Bruns J, Henninger R, Siemer K, Klenk R, Ellmer K and Bräunig D 1998 Semicond. Sci. Technol. 13 1456
[5] Wang Z D, Mo X L, Li J, Sun D L and Chen G R 2009 J. Alloys Compd. 487 L1
[6] Heidemann F, Gutay L, Meeder A and Bauer G H 2009 Thin Solid Films 517 2427
[7] Gusain M, Kumar P and Nagarajan R 2013 RSC Adv. 3 18863
[8] Yin Z, Hu Z L, Ye H H, Teng F, Yang C H and Tang A W 2014 Appl. Surf. Sci. 307 489
[9] Tomi S, Bernasconi L, Searle B G and Harrison N M 2014 J. Phys. Chem. C 118 14478
[10] Sheng X, Wang L, Luo Y P and Yang D R 2011 Nanoscale Res. Lett. 6 562
[11] Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W and Powalla M 2011 Prog. Photovoltaics 19 894
[12] Priyam A, Chatterjee A, Bhattacharya S C and Saha A 2007 J. Cryst. Growth 304 416
[13] Barnham K, Marques J L, Hassard J and O'Brien P 2000 Appl. Phys. Lett. 76 1197
[14] Cao H Q, Wang G Z, Zhang S C, Zhang X R and Daniel R 2006 Inorg. Chem. 45 5103
[15] Shafaay B A 2014 J. Chem. Bio. Phy. Sci. Sec. C 4 3606
[16] Xiong Y S, Zhang J, Huang F, Ren G Q, Liu W Z, Li D S, Wang C and Lin Z 2008 J. Phys. Chem. C 112 9229
[17] Ninomiya S and Adachi S 1995 J. Appl. Phys. 78 1183
[18] Pan A L, Wang S Q, Liu R B, Li C R and Zou B S 2005 Small 11 1058
[19] Huang W C, Tseng C H, Chang S H, Tuan H Y, Chiang C C, Lyu L M and Huang M H 2012 Langmuir 28 8496
[20] Liu H X, Tang F L, Xue H T, Zhang Y and Feng Y D 2015 Appl. Surf. Sci. 351 382
[21] Zhang Y, Tang F L, Xue H T, Lu W J, Liu J F and Huang M 2015 Physica E 66 342
[22] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
[23] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[24] Yu J, Lin X, Wang J J, Chen J and Huang W D 2009 Appl. Surf. Sci. 255 9032
[25] Ma L C, Zhang J M and Xu K W 2013 Physica E 50 1
[26] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Zhou J G, Causon D M, Mingham C G and Ingram D M 2001 J. Comput. Phys. 168 1
[29] Blöchl P E, Jepsen O and Andersen O K 1994 Phys. Rev. B 49 16223
[30] Hinuma Y, Oba F, Kumagai Y and Tanaka I 2013 Phys. Rev. B 88 035305
[31] Liechtenstein A L, Anisimov V L and Zaanen J 1995 Phys. Rev. B 52 5467
[32] Lany S and Zunger A 2005 Phys. Rev. B 72 035215
[33] Qi Y X, Liu Q C, Tang K B, Liang Z H, Ren Z B and Liu X M 2009 J. Phys. Chem. C 113 3939
[34] Pan D C, An L J, Sun Z M, Hou W, Yang Y, Yang Z Z and Lu Y F 2008 J. Am. Chem. Soc. 130 5620
[35] Knudson M D, Gupta Y M and Kunz A B 1999 Phys. Rev. B 59 11704
[36] Grünwald M, Zayak A, Neaton J B, Geissler P L and Rabani E 2012 J. Chem. Phys. 136 234111
[37] Xue H G, Shen Z Q and Li C M 2005 Biosens. Bioelectron. 20 2330
[38] Zhou F F, Chen Q M, Chen J, Wang T T, Jia Z, Dou X M and Zhuang S L 2014 Opt. Instrum. 36 342
[39] Madelung O 2004 Semiconductors:data handbook (New York:Springer) p. 289
[40] Deng H X, Li S S, Li J B and Wei S H 2012 Phys. Rev. B 85 195328
[41] Wang B D, Dai J H, Wu X, Song Y and Yang R 2015 Intermetallics 60 58
[42] Siegel D J, Hector L G and Adams J B 2002 Surf. Sci. 498 321
[43] Lu Z S, Li S S, Chen C and Yang Z X 2013 Acta. Phys. Sin. 62 117301 (in Chinese)
[1] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[2] Raman and infrared spectra of complex low energy tetrahedral carbon allotropes from first-principles calculations
Hui Wang(王翚), Ze-Yu Zhang(张泽宇), Xiao-Wu Cai(蔡小五), Zi-Han Liu(刘子晗), Yong-Xiang Zhang(张永翔), Zhen-Long Lv(吕珍龙), Wei-Wei Ju(琚伟伟), Hui-Hui Liu(刘汇慧), Tong-Wei Li(李同伟), Gang Liu(刘钢), Hai-Sheng Li(李海生), Hai-Tao Yan(闫海涛), Min Feng(冯敏). Chin. Phys. B, 2020, 29(9): 093601.
[3] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[4] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[5] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[6] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[7] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[8] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[9] First-principles calculations of solute-vacancy interactions in aluminum
Sha-Sha Zhang(张莎莎), Zheng-Jun Yao(姚正军), Xiang-Shan Kong(孔祥山), Liang Chen(陈良), Jing-Yu Qin(秦敬玉). Chin. Phys. B, 2020, 29(6): 066103.
[10] Experimental evaluation of interface states during time-dependent dielectric breakdown of GaN-based MIS-HEMTs with LPCVD-SiNx gate dielectric
Ya-Wen Zhao(赵亚文), Liu-An Li(李柳暗), Tao-Tao Que(阙陶陶), Qiu-Ling Qiu(丘秋凌), Liang He(何亮), Zhen-Xing Liu(刘振兴), Jin-Wei Zhang(张津玮), Qian-Shu Wu(吴千树), Jia Chen(陈佳), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬). Chin. Phys. B, 2020, 29(6): 067203.
[11] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
[12] Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(5): 058104.
[13] Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound
Wahiba Metiri, Khaled Cheikh. Chin. Phys. B, 2020, 29(4): 047101.
[14] Ab initio calculations on oxygen vacancy defects in strained amorphous silica
Bao-Hua Zhou(周保花), Fu-Jie Zhang(张福杰), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(4): 047103.
[15] Re effects in model Ni-based superalloys investigated with first-principles calculations and atom probe tomography
Dianwu Wang(王殿武), Chongyu Wang(王崇愚), Tao Yu(于涛), Wenqing Liu(刘文庆). Chin. Phys. B, 2020, 29(4): 043103.
No Suggested Reading articles found!