Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 118503    DOI: 10.1088/1674-1056/25/11/118503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Ultra-low temperature radio-frequency performance of partially depleted silicon-on-insulator n-type metal-oxide-semiconductor field-effect transistors with tunnel diode body contact structures

Kai Lu(吕凯)1,3, Jing Chen(陈静)1, Yuping Huang(黄瑜萍)2, Jun Liu(刘军)2, Jiexin Luo(罗杰馨)1, Xi Wang(王曦)1
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Shanghai 200050, China;
2 Key Laboratory for RF Circuits and Systems of Ministry of Education, Hangzhou Dianzi University, Hangzhou 310037, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Radio-frequency (RF) characteristics under ultra-low temperature of multi-finger partially depleted silicon-on-insulator (PD SOI) n-type metal-oxide-semiconductor field-effect transistors (nMOSFETs) with tunnel diode body-contact (TDBC) structure and T-gate body-contact (TB) structure are investigated in this paper. When operating at 77 K, TDBC device suppresses floating-body effect (FBE) as well as the TB device. For TB device and TDBC device, cut-off frequency (fT) improves as the temperature decreases to liquid-helium temperature (77 K) while that of the maximum oscillation frequency (fMAX) is opposite due to the decrease of the unilateral power gain. While operating under 77 K, fT and fMAX of TDBC device reach to 125 GHz and 77 GHz, representing 8% and 15% improvements compared with those of TB device, respectively, which is mainly due to the lower parasitic resistances and capacitances. The results indicate that TDBC SOI MOSFETs could be considered as promising candidates for analog and RF applications over a wide range of temperatures and there is immense potential for the development of RF CMOS integrated circuits for cryogenic applications.

Keywords:  partially depleted silicon-on-insulator      radio-frequency      body contact      ultra-low temperature  
Received:  13 April 2016      Revised:  18 July 2016      Accepted manuscript online: 
PACS:  85.30.-z (Semiconductor devices)  
  84.40.Lj (Microwave integrated electronics)  
Corresponding Authors:  Jing Chen     E-mail:  jchen@mail.sim.ac.cn

Cite this article: 

Kai Lu(吕凯), Jing Chen(陈静), Yuping Huang(黄瑜萍), Jun Liu(刘军), Jiexin Luo(罗杰馨), Xi Wang(王曦) Ultra-low temperature radio-frequency performance of partially depleted silicon-on-insulator n-type metal-oxide-semiconductor field-effect transistors with tunnel diode body contact structures 2016 Chin. Phys. B 25 118503

[1] Marshall A and Natarajan S 2002 SOI Design:Analog, Memory and Digital Techniques (New York:Kluwer Academic)
[2] Rozeau O, Jomaah J and Boussey J 2000 IEEE International SOI Conference, October 2-5, 2000, pp.124-125
[3] Tseng Y C, Huang W M, Mendicino M, Welch P, Ⅱderem V and Woo J C S 1999 LSI Technology, Digest of Technical Papers, June 14-16, 1999, pp. 27-28
[4] Dongwook S and Fossum J G 1995 IEEE Trans. Electron Dev. 42 728
[5] Chen J, Luo J X, Wu Q Q, Chai Z, Yu T, Dong Y J and Wang X 2011 IEEE Electron Dev. Lett. 32 1346
[6] Lu K, Chen J, Luo J X, Liu J, Wu Q Q, Chai Z and Wang X 2014 IEEE Electron Dev. Lett. 35 015
[7] Lu K, Chen J, Luo J X, He W W, Huang J Q, Chai Z and Wang X 2015 Chin. Phys. B 24 088501
[8] Esaki L 1958 Phys. Rev. 109 603
[9] Gaensslen F H, Rideout V L, Walker E J and Walker J L 1977 IEEE Trans. Electron Dev. 24 218
[10] Lederer D, Flandre D and Raskin J P 2005 Semicond. Sci. Technol. 20 469
[11] Valentin R, Dubois E, Raskin J P, Larrieu G, Dambrine G, Lim T C, Breil N and Danneville F 2008 IEEE Trans. Electron Dev. 55 1192
[12] Mason S J 1954 Trans. IRE Prof. Group Circuit Theory T-1 020
[1] Rydberg electromagnetically induced transparency and Autler-Townes splitting in a weak radio-frequency electric field
Liping Hao(郝丽萍), Yongmei Xue(薛咏梅), Jiabei Fan(樊佳蓓), Yuechun Jiao(焦月春), Jianming Zhao(赵建明), Suotang Jia(贾锁堂). Chin. Phys. B, 2019, 28(5): 053202.
[2] Aerodynamic actuation characteristics of radio-frequency discharge plasma and control of supersonic flow
Zhen Yang(杨臻), Hui-Min Song(宋慧敏), Hong-Yu Wang(王宏宇), Shan-Guang Guo(郭善广), Min Jia(贾敏), Kang Wang(王康). Chin. Phys. B, 2019, 28(2): 024701.
[3] Analysis of non-uniform hetero-gate-dielectric dual-material control gate TFET for suppressing ambipolar nature and improving radio-frequency performance
Hui-Fang Xu(许会芳), Jian Cui(崔健), Wen Sun(孙雯), Xin-Feng Han(韩新风). Chin. Phys. B, 2019, 28(10): 108501.
[4] Ultraviolet discharges from a radio-frequency system for potential biological/chemical applications
Joseph Ametepe, Sheng Peng, Dennis Manos. Chin. Phys. B, 2017, 26(8): 083302.
[5] Total ionizing dose induced single transistor latchup in 130-nm PDSOI input/output NMOSFETs
Shuang Fan(樊双), Zhi-Yuan Hu(胡志远), Zheng-Xuan Zhang(张正选), Bing-Xu Ning(宁冰旭), Da-Wei Bi(毕大炜), Li-Hua Dai(戴丽华), Meng-Ying Zhang(张梦映), Le-Qing Zhang(张乐情). Chin. Phys. B, 2017, 26(3): 036103.
[6] Effects of back gate bias on radio-frequency performance in partially depleted silicon-on-inslator nMOSFETs
Lü Kai, Chen Jing, Luo Jie-Xin, He Wei-Wei, Huang Jian-Qiang, Chai Zhan, Wang Xi. Chin. Phys. B, 2015, 24(8): 088501.
[7] Modeling of the nanoparticle coagulation in pulsed radio-frequency capacitively coupled C2H2 discharges
Liu Xiang-Mei, Li Qi-Nan, Li Rui. Chin. Phys. B, 2015, 24(7): 075204.
[8] Effect of thermal pretreatment of metal precursor on the properties of Cu2ZnSnS4 films
Wang Wei, Shen Hong-Lie, Jin Jia-Le, Li Jin-Ze, Ma Yue. Chin. Phys. B, 2015, 24(5): 056805.
[9] Investigation of high sensitivity radio-frequency readout circuit based on AlGaN/GaN high electron mobility transistor
Zhang Xiao-Yu, Tan Ren-Bing, Sun Jian-Dong, Li Xin-Xing, Zhou Yu, Lü Li, Qin Hua. Chin. Phys. B, 2015, 24(10): 105201.
[10] Radio-frequency compressed electron pulse-width characterization by cross-correlation between electron bunches and laser-induced plasma
Li Jing, Pei Min-Jie, Qi Da-Long, Qi Ying-Peng, Yang Yan, Sun Zhen-Rong. Chin. Phys. B, 2014, 23(12): 124209.
[11] Radio-frequency transistors from millimeter-scale graphene domains
Wei Zi-Jun, Fu Yun-Yi, Liu Jing-Bo, Wang Zi-Dong, Jia Yue-Hui, Guo Jian, Ren Li-Ming, Chen Yuan-Fu, Zhang Han, Huang Ru, Zhang Xing. Chin. Phys. B, 2014, 23(11): 117201.
[12] Electronic dynamic behavior in inductively coupled plasmas with radio-frequency bias
Gao Fei, Zhang Yu-Ru, Zhao Shu-Xia, Li Xue-Chun, Wang You-Nian. Chin. Phys. B, 2014, 23(11): 115202.
[13] Designing shielded radio-frequency phased-array coils for magnetic resonance imaging
Xu Wen-Long, Zhang Ju-Cheng, Li Xia, Xu Bing-Qiao, Tao Gui-Sheng . Chin. Phys. B, 2013, 22(1): 010203.
[14] Quantum dots-templated growth of strain-relaxed GaN on a c-plane sapphire by radio-frequency molecular beam epitaxy
Guo Hao-Min, Wen Long, Zhao Zhi-Fei, Bu Shao-Jiang, Li Xin-Hua, Wang Yu-Qi. Chin. Phys. B, 2012, 21(10): 108101.
[15] Effect of substrate temperature on microstructure and optical properties of single-phased Ag2O film deposited by using radio-frequency reactive magnetron sputtering method
Ma Jiao-Min, Liang Yan, Gao Xiao-Yong, Zhang Zeng-Yuan, Chen Chao, Zhao Meng-Ke, Yang Shi-E, Gu Jin-Hua, Chen Yong-Sheng, Lu Jing-Xiao. Chin. Phys. B, 2011, 20(5): 056102.
No Suggested Reading articles found!