Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 118403    DOI: 10.1088/1674-1056/25/11/118403
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Theoretical investigation of frequency characteristics of free oscillation and injection-locked magnetrons

Song Yue(岳松)1,2, Dong-ping Gao(高冬平)1, Zhao-chuan Zhang(张兆传)1, Wei-long Wang(王韦龙)1,2
1 Key Laboratory of High Power Microwave Sources and Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The frequency characteristics of free oscillation magnetron (FOM) and injection-locked magnetron (ILM) are theoretically investigated. By using the equal power voltage obtained from the experiment data, expressions of the frequency and radio frequency (RF) voltage of FOM and ILM, as well as the locking bandwidth, on the anode voltage and magnetic field are derived. With the increase of the anode voltage and the decrease of the magnetic field, the power and its growth rate increase, while the frequency increases and its growth rate decreases. The theoretical frequency and power of FOM agree with the particle-in-cell (PIC) simulation results. Besides, the theoretical trends of the power and frequency with the anode voltage and magnetic field are consistent with the experimental results, which verifies the accuracy of the theory. The theory provides a novel calculation method of frequency characteristics. It can approximately analyze the power and frequency of both FOM and ILM, which promotes the industrial applications of magnetron and microwave energy.
Keywords:  frequency      free oscillation magnetron      injection-locked magnetron      locking bandwidth     
Received:  24 May 2016      Published:  05 November 2016
PACS:  84.40.Fe (Microwave tubes (e.g., klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.))  
  42.25.Kb (Coherence)  
  52.65.Rr (Particle-in-cell method)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB328901) and the National Natural Science Foundation of China (Grant No. 11305177).
Corresponding Authors:  Song Yue     E-mail:  yuessd@163.com

Cite this article: 

Song Yue(岳松), Dong-ping Gao(高冬平), Zhao-chuan Zhang(张兆传), Wei-long Wang(王韦龙) Theoretical investigation of frequency characteristics of free oscillation and injection-locked magnetrons 2016 Chin. Phys. B 25 118403

[1] Belanger J M, Jocelyn P J R, Poon O, Fairbridge C, Ng S, Mutyala S and Hawkins R 2008 J. Microwave Power E. E. 42 24
[2] Adler R 1946 Proc. IRE 34 351
[3] Pengvanich P, Neculaes V B, Lau Y Y, Gilgenbach R M, Jones M, White W M and Kowalczyk R D 2005 J. Appl. Phys. 98 114903
[4] Razavi B 2004 IEEE Journal of Solid-State Circuits 39 1415
[5] Zhu X Y, Jen L, Liu Q X and Du X S 1996 Rev. Sci. Instrum. 67 2010
[6] Treado T A, Brown P D, Hansen T A and Aiguier D J 1994 IEEE Trans. Plasma Sci. 22 616
[7] Sze H, Smith R R, Benford J N and Harteneck B D 1992 IEEE Trans. Electromagn. Compat. 34 235
[8] Benford J, Sze H, Woo W, Smith R R and Harteneck B 1989 Phys. Rev. Lett. 62 8
[9] Kazakevich G M, Pavlov V M, Jeong Y U and Lee B C 2011 Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment 647 10
[10] Gilmour A S 2011 Klystrons, Traveling Wave Tubes, Magnetrons, Crossed-field Amplifiers, and Gyrotrons (New York:Artech House) p. 523
[11] Slater J C 1947 MIT. Cambridge, MA, RLE Tech. Rep. 3 1
[12] Slater J C 1946 Rev. Mod. Phys. 18 489
[13] Welch Jr H W 1953 Proc. IRE 41 1631
[14] David E E 1961 Crossed Field Microwave Devices (Vol. 2) (New York:Academic Press) p. 375
[15] David E E 1952 Proc. IRE 40 669
[16] Woo W, Benford J, Fittinghoff D, Harteneck B, Price D, Smith R and Sze H 1989 J. Appl. Phys. 65 861
[17] Chen S C 1990 IEEE Trans. Plasma Sci. 18 570
[18] Tahir I, Dexter A and Carter R 2005 IEEE Trans. Electron Devices 52 2096
[19] Tahir I, Dexter A and Carter R 2006 IEEE Trans. Electron Devices 53 1721
[20] Zhou J, Liu D, Liao C and Li Z 2009 IEEE Trans. Plasma Sci. 37 2002
[21] Zhang Z T 1981 Principles of Microwave Tubes (Beijing:National Defence Industry Press) p. 112(in Chinese)
[1] Effect of radio frequency bias on plasma characteristics of inductively coupled argon discharge based on fluid simulations
Xiao-Yan Sun(孙晓艳), Yu-Ru Zhang(张钰如), Sen Chai(柴森), You-Nian Wang(王友年), Yan-Yan Chu(楚艳艳), Jian-Xin He(何建新). Chin. Phys. B, 2020, 29(9): 095203.
[2] A 3-kHz Er: YAG single-frequency laser with a ‘triple-reflection’ configuration on a piezoelectric actuator
Shuai Huang(黄帅), Qing Wang(王庆), Meng Zhang(张濛), Chaoyong Chen(陈朝勇), Kaixin Wang(王凯鑫), Mingwei Gao(高明伟), Chunqing Gao(高春清). Chin. Phys. B, 2020, 29(8): 084204.
[3] High efficiency sub-nanosecond electro-optical Q-switched laser operating at kilohertz repetition frequency
Xin Zhao(赵鑫), Zheng Song(宋政), Yuan-Ji Li(李渊骥), Jin-Xia Feng(冯晋霞), Kuan-Shou Zhang(张宽收). Chin. Phys. B, 2020, 29(8): 084205.
[4] A two-mode squeezed light based on a double-pump phase-matching geometry
Xuan-Jian He(何烜坚), Jun Jia(贾俊), Gao-Feng Jiao(焦高锋), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2020, 29(7): 074207.
[5] High-performance frequency stabilization of ultraviolet diode lasers by using dichroic atomic vapor spectroscopy and transfer cavity
Danna Shen(申丹娜), Liangyu Ding(丁亮宇), Qiuxin Zhang(张球新), Chenhao Zhu(朱晨昊), Yuxin Wang(王玉欣), Wei Zhang(张威), Xiang Zhang(张翔). Chin. Phys. B, 2020, 29(7): 074210.
[6] Progress on the 40Ca+ ion optical clock
Baolin Zhang(张宝林), Yao Huang(黄垚), Huaqing Zhang(张华青), Yanmei Hao(郝艳梅), Mengyan Zeng(曾孟彦), Hua Guan(管桦), Kelin Gao(高克林). Chin. Phys. B, 2020, 29(7): 074209.
[7] Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation
Wen-Xiang Xue(薛文祥), Wen-Yu Zhao(赵文宇), Hong-Lei Quan(全洪雷), Cui-Chen Zhao(赵粹臣), Yan Xing(邢燕), Hai-Feng Jiang(姜海峰), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(6): 064209.
[8] Frequency-dependent reflection of elastic wave from thin bed in porous media
Hong-Xing Li(李红星), Chun-Hui Tao(陶春辉), Cai Liu(刘财), Guang-Nan Huang(黄光南), Zhen-An Yao(姚振岸). Chin. Phys. B, 2020, 29(6): 064301.
[9] Analysis of iris-loaded resonance cavity in miniaturized maser
Zu-Gen Guo(郭祖根), Yong Zhang(张勇), Tao Tang(唐涛), Zhan-Liang Wang(王战亮), Yu-Bin Gong(宫玉彬), Fei Xiao(肖飞), Hua-Rong Gong(巩华荣). Chin. Phys. B, 2020, 29(5): 050601.
[10] Cascaded optical frequency transfer over 500-km fiber link using regenerative amplifier
Xue Deng(邓雪), Dong-Dong Jiao(焦东东), Jie Liu(刘杰), Qi Zang(臧琦), Xiang Zhang(张翔), Dan Wang(王丹), Jing Gao(高静), Rui-Fang Dong(董瑞芳), Tao Liu(刘涛), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(5): 054205.
[11] Noise temperature distribution of superconducting hot electron bolometer mixers
Kang-Min Zhou(周康敏), Wei Miao(缪巍), Yue Geng(耿悦), Yan Delorme, Wen Zhang(张文), Yuan Ren(任远), Kun Zhang(张坤), Sheng-Cai Shi(史生才). Chin. Phys. B, 2020, 29(5): 058505.
[12] Nonlinear continuous bi-inductance electrical line with dissipative elements: Dynamics of the low frequency modulated waves
S M Ngounou, F B Pelap. Chin. Phys. B, 2020, 29(4): 040502.
[13] Comparative calculation on Li+ solvation in common organic electrolyte solvents for lithium ion batteries
Qi Liu(刘琦), Feng Wu(吴锋), Daobin Mu(穆道斌), Borong Wu(吴伯荣). Chin. Phys. B, 2020, 29(4): 048202.
[14] Coherent 420 nm laser beam generated by four-wave mixing in Rb vapor with a single continuous-wave laser
Hao Liu(刘浩), Jin-Peng Yuan(元晋鹏), Li-Rong Wang(汪丽蓉), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(4): 043203.
[15] An Yb-fiber frequency comb phase-locked to microwave standard and optical reference
Hui-Bo Wang(汪会波), Hai-Nian Han(韩海年), Zi-Yue Zhang(张子越), Xiao-Dong Shao(邵晓东), Jiang-Feng Zhu(朱江峰), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2020, 29(3): 030601.
No Suggested Reading articles found!