Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 118102    DOI: 10.1088/1674-1056/25/11/118102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Metal-enhanced fluorescence of graphene oxide by palladium nanoparticles in the blue-green part of the spectrum

A Omidvar1, M R RashidianVaziri2, B Jaleh1, N Partovi Shabestari2, M Noroozi3
1 Department of Physics, Bu-Ali Sina University, P. O. Box 65174, Hamedan, Iran;
2 Laser and Optics Research School, NSTRI, Tehran, Iran;
3 Center for Research and Development of Petroleum Technologies at Kermanshah, Research Institute of Petroleum Industry(RIPI), Kermanshah, Iran
Abstract  Graphene oxide (GO) has a wide fluorescence bandwidth, which makes it a prospective candidate for numerous applications. For many of these applications, the fluorescence yield of GO should be further increased. The sp2-hybridized carbons in GO confine the π-electrons. Radiative recombination of electron-hole pairs in such sp2 clusters is the source of fluorescence in this material. Palladium nanoparticles are good catalysts for sp2 bond formations. We report on the preparation of GO, palladium nanoparticles and their nanocomposites in two different solvents. It is shown that palladium nanoparticles can considerably enhance the intrinsic fluorescence of GO in the blue-green part of the visible light spectrum. Fluorescence enhancement has been attributed to the catalytic role of palladium nanoparticles in increasing the number of sp2 bonds of GO with the molecules of the surrounding media. It is shown that palladium nanoparticles could be the nanoparticle of choice for fluorescence enhancement of GO because of their catalytic role in sp2 bond formation.
Keywords:  graphene oxide      Pd nanoparticles      fluorescence  
Received:  10 February 2016      Revised:  15 July 2016      Accepted manuscript online: 
PACS:  78.67.Wj (Optical properties of graphene)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  87.64.kv (Fluorescence)  
Corresponding Authors:  M R RashidianVaziri     E-mail:  rezaeerv@gmail.com

Cite this article: 

A Omidvar, M R RashidianVaziri, B Jaleh, N Partovi Shabestari, M Noroozi Metal-enhanced fluorescence of graphene oxide by palladium nanoparticles in the blue-green part of the spectrum 2016 Chin. Phys. B 25 118102

[1] Loh K P, Bao Q, Eda G and Chhowalla M 2010 Nat. Chem. 2 1015
[2] Fakhri P, Vaziri M R, Jaleh B and Shabestari N P 2015 J. Opt. 18 015502
[3] Jingfeng H, Larisika M, Hu C, Faulkner S, Nimmo M A, Nowak C and Yoong A T I 2014 Chin. Phys. B 23 088104
[4] Zhao J, Zhang G Y and Shi D X 2013 Chin. Phys. B 22 057701
[5] Kazemi E, Dadfarnia S, Shabani A M H, Abbasi A, Vaziri M R R and Behjat A 2016 Talanta 147 561
[6] Kazemi E, Shabani A M H, Dadfarnia S, Abbasi A, Vaziri M R R and Behjat A 2016 Anal. Chim. Acta 905 85
[7] Xu J, Liu J, Wu S, Yang Q H and Wang P 2012 Opt. Express 20 15474
[8] Yang J M, Yang Q, Lie J, Wang Y G and Tsang Y H 2013 Chin. Phys. B 22 094210
[9] Fakhri P, Nasrollahzadeh M and Jaleh B 2014 RSC Adv. 4 48691
[10] Luo Z, Vora P M, Mele E J, Johnson A C and Kikkawa J M 2009 Appl. Phys. Lett. 94 111909
[11] Eda G, Lin Y Y, Mattevi C, Yamaguchi H, Chen H A, Chen I S, Chen C W and Chhowalla M 2010 Adv. Mater. 22 505
[12] Cuong T V, Pham V H, Tran Q T, Hahn S H, Chung J S, Shin E W and Kim E J 2010 Mater. Lett. 64 399
[13] Chen J L and Yan X P 2010 J. Mater. Chem. 20 4328
[14] Hu Y, He D W, Wang Y S, Duan J H, Wang S F, Fu M and Wang W S 2014 Chin. Phys. B 23 128103
[15] Demichelis F, Schreiter S and Tagliaferro A 1995 Phys. Rev. B 51 2143
[16] Robertson J and Amaratunga G 1996 J. Appl. Phys. 80 2998
[17] Koos M, Veres M, Füle M and Pocsik I 2002 Diamond Relat. Mater. 11 53
[18] Dong H, Gao W, Yan F, Ji H and Ju H 2010 Anal. Chem. 82 5511
[19] Chen J L and Yan X P 2011 Chem. Commun. 47 3135
[20] Gill R, Tian L, Somerville W R, Le Ru E C, van Amerongen H and Subramaniam V 2012 J. Phys. Chem. C 116 16687
[21] Chen Y, Munechika K and Ginger D S 2007 Nano Lett. 7 690
[22] Aslan K, Huang J, Wilson G M and Geddes C D 2006 J. Am. Chem. Soc. 128 4206
[23] Aslan K, Holley P and Geddes C D 2006 J. Mater. Chem. 16 2846
[24] Geddes C D and Lakowicz J R 2002 J. Fluoresc. 12 121
[25] Li C, Zhu Y, Zhang X, Yang X and Li C 2012 RSC Adv. 2 1765
[26] Zhu S, Zhang J, Tang S, Qiao C, Wang L, Wang H, Liu X, Li B, Li Y and Yu W 2012 Adv. Funct. Mater. 22 4732
[27] Pan D, Zhang J, Li Z and Wu M 2010 Adv. Mater. 22 734
[28] Liu S, Wang L, Tian J, Zhai J, Luo Y, Lu W and Sun X 2011 RSC Adv. 1 951
[29] Li L, Wu G, Yang G, Peng J, Zhao J and Zhu J J 2013 Nanoscale 5 4015
[30] Zhu S, Zhang J, Wang L, Song Y, Zhang G, Wang H and Yang B 2012 Chem. Commun. 48 10889
[31] Zhu S, Zhang J, Liu X, Li B, Wang X, Tang S, Meng Q, Li Y, Shi C and Hu R 2012 Rsc Adv. 2 2717
[32] Ran C, Wang M, Gao W, Yang Z, Shao J, Deng J and Song X 2014 RSC Adv. 4 21772
[33] Li C, Zhu Y, Wang S, Zhang X, Yang X and Li C 2014 J. Fluores. 24 137
[34] Zhang J, Fu Y, Liang D, Zhao R Y and Lakowicz J R 2008 Langmuir 24 12452
[35] Fihri A, Bouhrara M, Nekoueishahraki B, Basset J M and Polshettiwar V 2011 Chem. Soc. Rev. 40 5181
[36] Mandali P K and Chand D K 2013 Catal. Commun. 31 16
[37] Heugebaert T S, De Corte S, Sabbe T, Hennebel T, Verstraete W, Boon N and Stevens C V 2012 Tetrahedron Lett. 53 1410
[38] Ganesan M, Freemantle R G and Obare S O 2007 Chem. Mater. 19 3464
[39] Balanta A, Godard C and Claver C 2011 Chem. Soc. Rev. 40 4973
[40] Keum D, Kim S and Kim Y 2014 Chem. Commun. 50 1268
[41] Mann G, Hartwig J F, Driver M S and Fernández-Rivas C 1998 J. Am. Chem. Soc. 120 827
[42] Hummers Jr W S and Offeman R E 1958 J. Am. Chem. Soc. 80 1339
[43] Kovtyukhova N I, Ollivier P J, Martin B R, Mallouk T E, Chizhik S A, Buzaneva E V and Gorchinskiy A D 1999 Chem. Mater. 11 771
[44] Lakowicz J R 1999 Principles of Fluorescence Spectroscopy (Springer) pp. 25-61
[45] Ganeev R, Boltaev G, Tugushev R and Usmanov T 2010 Appl. Phys. B 100 571
[46] Mie G 1908 Ann. Phys. 25 377
[47] Hulst H C and Van De Hulst H 1957 Light Scattering by Small Particles(Courier Corporation)
[48] Jain P K, Lee K S, El-Sayed I H and El-Sayed M A 2006 J. Phys. Chem. B 110 7238
[49] Sullivan B T 1990 Appl. Opt. 29 1964
[50] Averitt R, Sarkar D and Halas N 1997 Phys. Rev. Lett. 78 4217
[51] Pernites R, Vergara A, Yago A, Cui K and Advincula R 2011 Chem. Commun. 47 9810
[52] Tang Y, Huang F, Zhao W, Liu Z and Wan D 2012 J. Mater. Chem. 22 11257
[53] Du F P, Wang J J, Tang C Y, Tsui C P, Zhou X P, Xie X L and Liao Y G 2012 Nanotechnology 23 475704
[54] Kim K H, Yang M, Cho K M, Jun Y S, Lee S B and Jung H T 2013 Sci. Rep. 3 3251
[55] Chen H, Müller M B, Gilmore K J, Wallace G G and Li D 2008 Adv. Mater. 20 3557
[56] Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner R D, Stankovich S, Jung I, Field D A and Ventrice C A 2009 Carbon 47 145
[57] Sokolov D A, Shepperd K R and Orlando T M 2010 J. Phys. Chem. Lett. 1 2633
[58] Kong B S, Geng J and Jung H T 2009 Chem. Commun. 16 2174
[59] El-Shall M S Heterogeneous Catalysis by Metal NanoparticlesSupported on Graphene:Graphene:Synthesis, Properties, and Phenomena (Ed. Rao C N R and Sood A K) (Weinheim, Germany:Wiley-VCH Verlag GmbH & Co. KGaA)
[60] Sun X, Liu Z, Welsher K, Robinson J T, Goodwin A, Zaric S and Dai H 2008 Nano Res. 1 203
[61] Subrahmanyam K, Kumar P, Nag A and Rao C 2010 Solid State Commun. 150 1774
[1] Degenerate cascade fluorescence: Optical spectral-line narrowing via a single microwave cavity
Liang Hu(胡亮), Xiang-Ming Hu(胡响明), and Qing-Ping Hu(胡庆平). Chin. Phys. B, 2021, 30(6): 064211.
[2] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[3] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[4] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[5] Perspective for aggregation-induced delayed fluorescence mechanism: A QM/MM study
Jie Liu(刘杰), Jianzhong Fan(范建忠), Kai Zhang(张凯), Yuchen Zhang(张雨辰), Chuan-Kui Wang(王传奎), Lili Lin(蔺丽丽). Chin. Phys. B, 2020, 29(8): 088504.
[6] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
[7] A method for calibrating the confocal volume of a confocal three-dimensional micro-x-ray fluorescence setup
Peng Zhou(周鹏), Xin-Ran Ma(马欣然), Shuang Zhang(张爽), Tian-Xi Sun(孙天希), Zhi-Guo Liu(刘志国). Chin. Phys. B, 2020, 29(2): 020702.
[8] High sensitive pressure sensors based on multiple coating technique
Rizwan Zahoor, Chang Liu(刘畅), Muhammad Rizwan Anwar, Fu-Yan Lin(林付艳), An-Qi Hu(胡安琪), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(2): 028102.
[9] Absorption, quenching, and enhancement by tracer in acetone/toluene laser-induced fluorescence
Guang Chang(常光), Xin Yu(于欣), Jiangbo Peng(彭江波), Yang Yu(于杨), Zhen Cao(曹振), Long Gao(高龙), Minghong Han(韩明宏), and Guohua Wu(武国华). Chin. Phys. B, 2020, 29(12): 124212.
[10] Spectral attenuation of a 400-nm laser pulse propagating through a plasma filament induced by an intense femtosecond laser pulse
Quan-Jun Wang(王全军), Rao Chen(陈娆), Jia-Chen Zhao(赵家琛), Chun-Lin Sun(孙春霖), Xiao-Zhen Wang(王小珍), Jing-Jie Ding(丁晶洁), Zuo-Ye Liu(刘作业), Bi-Tao Hu(胡碧涛). Chin. Phys. B, 2020, 29(1): 013301.
[11] Highly sensitive detection of Rydberg atoms with fluorescence loss spectrum in cold atoms
Xuerong Shi(师雪荣), Hao Zhang(张好), Mingyong Jing(景明勇), Linjie Zhang(张临杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2020, 29(1): 013201.
[12] Optimization of a magneto-optic trap using nanofibers
Xin Wang(王鑫), Li-Jun Song(宋丽军), Chen-Xi Wang(王晨曦), Peng-Fei Zhang(张鹏飞), Gang Li(李刚), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(7): 073701.
[13] First-principles insight into Li and Na ion storage in graphene oxide
Shu-Ying Zhong(钟淑英), Jing Shi(石晶), Wen-Wei Luo(罗文崴), Xue-Ling Lei(雷雪玲). Chin. Phys. B, 2019, 28(7): 078201.
[14] Flexible rGO/Fe3O4 NPs/polyurethane film with excellent electromagnetic properties
Wei-Qi Yu(余维琪), Yi-Chen Qiu(邱怡宸), Hong-Jun Xiao(肖红君), Hai-Tao Yang(杨海涛), Ge-Ming Wang(王戈明). Chin. Phys. B, 2019, 28(10): 108103.
[15] Crystal growth and spectral properties of Tb: Lu2O3
Jiaojiao Shi(施佼佼), Bin Liu(刘斌), Qingguo Wang(王庆国), Huili Tang(唐慧丽), Feng Wu(吴锋), Dongzhen Li(李东振), Hengyu Zhao(赵衡煜), Zhanshan Wang(王占山), Wen Deng(邓文), Xu Zian(徐子安), Xu Jiayue(徐家跃), Xiaodong Xu(徐晓东), Jun Xu(徐军). Chin. Phys. B, 2018, 27(9): 097801.
No Suggested Reading articles found!