Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 110305    DOI: 10.1088/1674-1056/25/11/110305
GENERAL Prev   Next  

Cryptanalysis of quantum broadcast communication and authentication protocol with a one-time pad

Ya Cao(曹雅)1,2, Fei Gao(高飞)1
1 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 State Key Laboratory of Cryptology, Beijing 100878, China
Abstract  

Chang et al. [Chin. Phys. B 23 010305 (2014)] have proposed a quantum broadcast communication and authentication protocol. However, we find that an intercept-resend attack can be preformed successfully by a potential eavesdropper, who will be able to destroy the authentication function. Afterwards, he or she can acquire the secret transmitted message or even modify it while escaping detection, by implementing an efficient man-in-the-middle attack. Furthermore, we show a simple scheme to defend this attack, that is, applying non-reusable identity strings.

Keywords:  quantum broadcast communication      quantum secure direct communication      Greenberger-Horne-Zeilinger(GHZ) state      authentication  
Received:  23 May 2016      Revised:  07 July 2016      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61272057 and 61170270).

Corresponding Authors:  Fei Gao     E-mail:  caoshinee@126.com

Cite this article: 

Ya Cao(曹雅), Fei Gao(高飞) Cryptanalysis of quantum broadcast communication and authentication protocol with a one-time pad 2016 Chin. Phys. B 25 110305

[1] Bennett C H and Brassard G 1984 Pro. IEEE Int. Conf. on Computers, Systems and Signal Processing (New York:IEEE) p. 175
[2] Sun Y and Wen Q Y 2010 Phys. Rev. A 82 052318
[3] Wang C Z, Guo H, Ren J G, Cao Y, Peng C Z and Liu W Y 2014 Science China Physics, Mechanics and Astronomy 57 1233
[4] Lu X M, Zhang L J, Wang Y G, ChenW, Huang D J, Li D, Wang S, He D Y, Yin Z Q, Zhou Y, Hui C and Han Z F 2015 Science China Physics, Mechanics and Astronomy 58 120301
[5] Li Y, Bao W S, Li H W, Zhou C and W Y 2015 Chin. Phys. B 24 110307
[6] Wang L, Zhao S M, Gong L Y and Cheng W W 2015 Chin. Phys. B 24 120307
[7] Li Y, Bao W S, Li H W, Zhou C and W Y 2015 Chin. Phys. B 25 10305
[8] An X B, Yin Z Q and Han Z F 2015 Acta Phys. Sin. 64 140303(in Chinese)
[9] Sun Y, Zhao S H and Dong C 2015 Acta Phys. Sin. 64 140304(in Chinese)
[10] Deng F G, Li X H, Zhou H Y and Zhang Z J 2005 Phys. Rev. A 72 044302(in Chinese)
[11] Qin S J, Gao F, Wen Q Y and Zhu F C 2006 Phys. Lett. A 357 101(in Chinese)
[12] Yang Y G, Chai H P, Wang Y, Teng Y W and Wen Q Y 2011 Science China Physics, Mechanics and Astronomy 54 1619
[13] Sun Y, Gao F, Yuan Z, Li Y B and Wen Q Y 2012 Quantum Information Processing 11 1741
[14] Choi J W, Chang K Y and Hong D 2011 Phys. Rev. A 84 062330
[15] Zhang K J, Song T T, Zuo H J and Zhang W W 2013 Physica Scripta 87 045012
[16] Yu C H, Guo G D and Lin S 2014 Science China Physics, Mechanics and Astronomy 57 2079
[17] Wang T Y, Cai X Q, Ren Y L and Zhang R L 2015 Sci. Rep. 5 9231
[18] Gao F, Liu B, Wen Q Y and Chen H 2012 Opt. Commun. 20 17411
[19] Zhang J L, Guo F Z, Gao F, Liu B and Wen Q Y 2013 Phys. Rev. A 88 022334
[20] Wei C Y, Gao F, Wen Q Y and Wang T Y 2014 Sci. Rep. 4 7537
[21] Yang Y G, Sun S J, Xu P and Tian J 2014 Quantum Information Processing 13 805
[22] Gao F, Liu B, Huang W and Wen Q Y 2015 IEEE Journal of Selected Topics in Quantum Electronics 21 98
[23] Liu B, Gao F, Huang W and Wen Q Y 2015 Science China Physics, Mechanics and Astronomy 58 100301
[24] Wei C Y, Wang T Y and Gao F 2016 Phys. Rev. A 93 042318
[25] Beige A, Englert B G, Kurtsiefer C and Weinfurter H 2002 Journal of Physics A:Mathematical and General 35 L407
[26] Boström K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
[27] Wòjcik A 2003 Phys. Rev. Lett. 90 157901
[28] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[29] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[30] Zhang Z J, Liu J, Wang D and Shi S H 2007 Phys. Rev. A 75 026301
[31] Lin S, Wen Q Y, Gao F and Zhu F C 2008 Phys. Rev. A 78 064304
[32] Qin S J, Wen Q Y, Meng L M and Zhu F C 2009 Science in China Series G:Physics, Mechanics and Astronomy 52 1208
[33] Liu D, Pei C X, Quan D X and Zhao N 2010 Chin. Phys. Lett. 27 050306
[34] Gao F, Qin S J, Guo F Z and Wen Q Y 2011 Chin. Phys. Lett. 28 020303
[35] Huang W, Wen Q Y, Jia H Y, Qin S J and Gao F 2012 Chin. Phys. B 21 100308
[36] Chang Y, Xu C, Zhang S and Yan L 2014 Chin. Sci. Bull. 59 2541
[37] Zou X F and Qiu D W 2014 Science China Physics, Mechanics and Astronomy 57 1696
[38] Zawadzki P 2015 Quantum Information Processing 14 2589
[39] Ma H Y, Qin G Q, Fan X K and Chu P C 2015 Acta Phys. Sin. 64 160306(in Chinese)
[40] Li X H 2015 Acta Phys. Sin. 64 160307(in Chinese)
[41] Deng F G, Long G L, Wang Y and Xiao L 2004 Chin. Phys. Lett. 21 2097
[42] Wang J, Zhang Q and Tang C J 2007 Chin. Phys. 16 1868
[43] Yang Y G, Wang Y H and Wen Q Y 2010 Chin. Phys. B 19 070304
[44] Lo H and Ko T 2005 Quantum Information Processing 5 41
[45] Deng F G, Li X H, Zhou H Y and Zhang Z j 2005 Phys. Rev. A 72 044302
[46] Gao F, Guo F Z, Wen Q Y and Zhu F C 2005 Phys. Rev. A 72 036302
[47] Qin S J, Gao F, Wen Q Y and Zhu F C 2007 Phys. Rev. A 76 062324
[48] Gao F, Qin S J, Guo F Z and Wen Q Y 2011 Phys. Rev. A 84 022344
[49] Wang T Y and Li Y P 2013 Quantum Information Processing 12 1991
[50] Huang W, Yang Y H and Jia H Y 2015 Quantum Information Processing 14 2211
[51] Chang Y, Xu C X, Zhang S B and Yan L L 2014 Chin. Phys. B 23 010305
[52] Li C Y, Zhou H Y, Wang Y and Deng F G 2005 Chin. Phys. Lett. 22 1049
[53] Deng F G, Li X H, Li C Y, Zhou P, Liang Y J and Zhou H Y 2006 Chin. Phys. Lett. 23 1676
[54] Li X H, Li C Y, Deng F G, Zhou P, Liang Y J and Zhou H Y 2007 Chin. Phys. Lett. 24 23
[55] Zheng C and Long G F 2014 Science China Physics, Mechanics and Astronomy 57 1238
[56] Lin T H and Hwang T 2014 Quantum Information Processing 13 917
[1] Measurement-device-independent one-step quantum secure direct communication
Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2022, 31(12): 120303.
[2] Phase retrieval algorithm for optical information security
Shi-Qing Wang(王诗晴), Xiang-Feng Meng(孟祥锋), Yu-Rong Wang(王玉荣), Yong-Kai Yin(殷永凯), Xiu-Lun Yang(杨修伦). Chin. Phys. B, 2019, 28(8): 084203.
[3] Two-step quantum secure direct communication scheme with frequency coding
Xue-Liang Zhao(赵学亮), Jun-Lin Li(李俊林), Peng-Hao Niu(牛鹏皓), Hong-Yang Ma(马鸿洋), Dong Ruan(阮东). Chin. Phys. B, 2017, 26(3): 030302.
[4] Cryptanalysis and improvement of quantum broadcast communication and authentication protocol with a quantum one-time pad
Zhi-Hao Liu(刘志昊), Han-Wu Chen(陈汉武). Chin. Phys. B, 2016, 25(8): 080308.
[5] Controlled mutual quantum entity authentication using entanglement swapping
Min-Sung Kang, Chang-Ho Hong, Jino Heo, Jong-In Lim, Hyung-Jin Yang. Chin. Phys. B, 2015, 24(9): 090306.
[6] Robust quantum secure direct communication and authentication protocol against decoherence noise based on six-qubit DF state
Chang Yan (昌燕), Zhang Shi-Bin (张仕斌), Yan Li-Li (闫丽丽), Han Gui-Hua (韩桂华). Chin. Phys. B, 2015, 24(5): 050307.
[7] Quantum secure direct communication network with hyperentanglement
Chang Ho Hong, Jino Heo, Jong In Lim, Hyung Jin Yang. Chin. Phys. B, 2014, 23(9): 090309.
[8] Quantum broadcast communication and authentication protocol with a quantum one-time pad
Chang Yan (昌燕), Xu Chun-Xiang (许春香), Zhang Shi-Bin (张仕斌), Yan Li-Li (闫丽丽). Chin. Phys. B, 2014, 23(1): 010305.
[9] Quantum steganography with large payload based on dense coding and entanglement swapping of Greenberger-Horne-Zeilinger states
Ye Tian-Yu (叶天语), Jiang Li-Zhen (蒋丽珍). Chin. Phys. B, 2013, 22(5): 050309.
[10] Content-based image hashing using wave atoms
Liu Fang(刘芳), Leung Hon-Yin(梁瀚贤), Cheng Lee-Ming(郑利明), and Ji Xiao-Yong(季晓勇) . Chin. Phys. B, 2012, 21(4): 040204.
[11] Fault tolerant quantum secure direct communication with quantum encryption against collective noise
Huang Wei (黄伟), Wen Qiao-Yan (温巧燕), Jia Heng-Yue (贾恒越), Qin Su-Juan (秦素娟), Gao Fei (高飞). Chin. Phys. B, 2012, 21(10): 100308.
[12] A two-step quantum secure direct communication protocol with hyperentanglement
Gu Bin(顾斌), Huang Yu-Gai(黄余改), Fang Xia(方夏), and Zhang Cheng-Yi(张成义) . Chin. Phys. B, 2011, 20(10): 100309.
[13] Quantum broadcast communication with authentication
Yang Yu-Guang(杨宇光), Wang Ye-Hong(王叶红), and Wen Qiao-Yan(温巧燕). Chin. Phys. B, 2010, 19(7): 070304.
[14] Three-party quantum secret sharing of secure direct communication based on $\chi$-type entangled states
Yang Yu-Guang(杨宇光), Cao Wei-Feng(曹卫锋), and Wen Qiao-Yan(温巧燕). Chin. Phys. B, 2010, 19(5): 050306.
[15] Improving the security of secure deterministic communication scheme based on quantum remote state preparation
Qin Su-Juan(秦素娟) and Wen Qiao-Yan(温巧燕). Chin. Phys. B, 2010, 19(2): 020310.
No Suggested Reading articles found!