Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 108102    DOI: 10.1088/1674-1056/25/10/108102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Electric-field-dependent charge delocalization from dopant atoms in silicon junctionless nanowire transistor

Hao Wang(王昊)1, Wei-Hua Han(韩伟华)1, Xiao-Song Zhao(赵晓松)1, Wang Zhang(张望)1, Qi-Feng Lyu(吕奇峰)1, Liu-Hong Ma(马刘红)1,2, Fu-Hua Yang(杨富华)1,2
1 Engineering Research Center for Semiconductor Integration Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 State Key Laboratory for Superlattices and Microstructures, Beijing 100083, China
Abstract  

We study electric-field-dependent charge delocalization from dopant atoms in a silicon junctionless nanowire transistor by low-temperature electron transport measurement. The Arrhenius plot of the temperature-dependent conductance demonstrates the transport behaviors of variable-range hopping (below 30 K) and nearest-neighbor hopping (above 30 K). The activation energy for the charge delocalization gradually decreases due to the confinement potential of the conduction channel decreasing from the threshold voltage to the flatband voltage. With the increase of the source-drain bias, the activation energy increases in a temperature range from 30 K to 100 K at a fixed gate voltage, but decreases above the temperature of 100 K.

Keywords:  quantum dots      electric field      junctionless nanowire transistor      current oscillations     
Received:  31 March 2016      Published:  05 October 2016
PACS:  81.07.Ta (Quantum dots)  
  94.20.Ss (Electric fields; current system)  
  81.07.Gf (Nanowires)  
  85.30.Tv (Field effect devices)  
Fund: 

Project supported partly by the National Key R & D Program of China (Grant No. 2016YFA02005003) and the National Natural Science Foundation of China (Grant Nos. 61376096 and 61327813).

Corresponding Authors:  Wei-Hua Han, Fu-Hua Yang     E-mail:  weihua@semi.ac.cn;fhyang@semi.ac.cn

Cite this article: 

Hao Wang(王昊), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Wang Zhang(张望), Qi-Feng Lyu(吕奇峰), Liu-Hong Ma(马刘红), Fu-Hua Yang(杨富华) Electric-field-dependent charge delocalization from dopant atoms in silicon junctionless nanowire transistor 2016 Chin. Phys. B 25 108102

[1] Ferain I, Colinge C A and Colinge J P 2011 Nature 479 310
[2] Natarajan S, Agostinelli M, Akbar S, et al. 2014 Electron Devices Meeting (IEDM) 3.7.1
[3] Lavieville R, Triozon F, Barraud S, Corna A, Jehl X, Sanquer M, Li J, Abisset A, Duchemin I and Niquet Y M 2015 Nano Lett. 15 2958
[4] Tabe M, Moraru D, Ligowski M, Anwar M, Jablonski R, Ono Y and Mizuno T 2010 Phys. Rev. Lett. 105 016803
[5] Sellier H, Lansbergen G P, Caro J, Rogge S, Collaert N, Ferain I, Jurczak M and Biesemans S 2006 Phys. Rev. Lett. 97 206805
[6] Pierre M, Wacquez R, Jehl X, Sanquer M, Vinet M and Cueto O 2010 Nat. Nanotechnol. 5 133
[7] Rezapour A and Rezapour P 2015 J. Semicond. 36 093002
[8] Fuechsle M, Miwa J A, Mahapatra S, Ryu H, Lee S, Warschkow O, Hollenberg L C L, Klimeck G and Simmons M Y 2012 Nat. Nanotech- nol. 7 242
[9] Ligowski M, Moraru D, Anwar M, Mizuno T, Jablonski R and Tabe M 2008 Appl. Phys. Lett. 93 142101
[10] Hamid E, Moraru D, Kuzuya Y, Mizuno T, Anh L T, Mizuta H and Tabe M 2013 Phys. Rev. B 87 085420
[11] Colinge J P, Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I, Razavi P, O'Neill B, Blake A, White M, Kelleher A M, McCarthy B and Murphy R 2010 Nat. Nanotechnol. 5 225
[12] Colinge J P, Kranti A, Yan R, Lee C W, Ferain I, Yu R, Akhavan N D and Razavi P 2011 Solid State Electron. 65 33
[13] Park J T, Kim J Y, Lee C W and Colinge J P 2010 Appl. Phys. Lett. 97 172101
[14] Yi K S, Trivedi K, Floresca H C, Yuk H, Hu W and Kim M J 2011 Nano Lett. 115 5465
[15] Akhavan N D, Afzalian A, Lee C W, Yan R, Ferain I, Razavi P, Yu R, Fagas G and Colinge J P 2010 J. Appl. Phys. 108 034510
[16] Prati E, Hori M, Guagliardo F, Ferrari G and Shinada T 2012 Nat. Nan-otechnol. 7 443
[17] Qiu H, Xu T, Wang Z, Ren W, Nan H, Ni Z, Chen Q, Yuan S, Miao F, Song F, Long G, Shi Y, Sun L, Wang J and Wang X 2013 Nat. Commun. 4 2642
[18] Turk M E, Choi J H, Oh S J, Fafarman A T, Diroll B T, Murray C B, Kagan C R and Kikkawa J M 2014 Nano Lett. 14 5948
[19] Roche B, Dupont-Ferrier E, Voisin B, Cobian M, Jehl X and Wacquez R 2012 Phys. Rev. Lett. 108 206812
[20] Wang H, Han W, Li X, Zhang Y and Yang F 2014 J. Appl. Phys. 116 124505
[21] Akhavan N D, Afzalian A, Lee C W, Yan R, Ferain I, Razavi P, Fagas G and Colinge J P 2010 IEEE T. Electron Dev. 57 1102
[22] Akhavan N D, Ferain I, Yu R, Razavi P and Colinge J P 2012 Solid- State Electron. 70 92
[23] Li X, Han W, Wang H, Ma L, Zhang Y, Du Y and Yang F 2013 Appl. Phys. Lett. 102 223507
[24] Mott N F 1987 Conduction in Non-Crystalline Materials (New York: Clarendon Press)
[25] Altermatt P P, Schenk A and Heiser G 2006 J. Appl. Phys. 100 113714
[26] Thomas G A, Capizzi M, DeRosa F, Bhatt R N and Rice T M 1981 Phys. Rev. B 10 5472
[27] Ma L, Han W, Wang H, Hong W, Lyu Q, Yang X and Yang F 2015 J. Appl. Phys. 117 034505
[28] Davis E A and Mott N F 1970 Philos. Mag. 22 0903
[1] Recent advances, perspectives, and challenges inferroelectric synapses
Bo-Bo Tian(田博博), Ni Zhong(钟妮), Chun-Gang Duan(段纯刚). Chin. Phys. B, 2020, 29(9): 097701.
[2] Optical absorption in asymmetrical Gaussian potential quantum dot under the application of an electric field
Xue-Chao Li(李学超), Chun-Bao Ye(叶纯宝), Juan Gao(高娟), Bing Wang(王兵). Chin. Phys. B, 2020, 29(8): 087302.
[3] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[4] Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: A theoretical model and particle-in-cell simulations
Kai Huang(黄楷), Quan-Ming Lu(陆全明), Rong-Sheng Wang(王荣生), Shui Wang(王水). Chin. Phys. B, 2020, 29(7): 075202.
[5] Ionic liquid gating control of planar Hall effect in Ni80Fe20/HfO2 heterostructures
Yang-Ping Wang(汪样平), Fu-Fu Liu(刘福福), Cai Zhou(周偲), Chang-Jun Jiang(蒋长军). Chin. Phys. B, 2020, 29(7): 077507.
[6] Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels
Mei-Na Zhang(张美娜), Yan Shao(邵龑), Xiao-Lin Wang(王晓琳), Xiaohan Wu(吴小晗), Wen-Jun Liu(刘文军), Shi-Jin Ding(丁士进). Chin. Phys. B, 2020, 29(7): 078503.
[7] Excitation-wavelength-dependent THz wave modulation via external bias electric field
Shi-Jia Feng(冯世嘉), Li-Quan Dong(董立泉), Dan-Ni Ma(马丹妮), Tong Wu(吴同), Yong Tan(谭永), Liang-Liang Zhang(张亮亮), Cun-Lin Zhang(张存林), Yue-Jin Zhao(赵跃进). Chin. Phys. B, 2020, 29(6): 064210.
[8] Improved carrier transport in Mn:ZnSe quantum dots sensitized La-doped nano-TiO2 thin film
Shao Li(李绍), Gang Li(李刚), Li-Shuang Yang(杨丽爽), Kui-Ying Li(李葵英). Chin. Phys. B, 2020, 29(4): 046104.
[9] Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华). Chin. Phys. B, 2020, 29(3): 038104.
[10] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
[11] Electrohydrodynamic behaviors of droplet under a uniform direct current electric field
Zi-Long Deng(邓梓龙), Mei-Mei Sun(孙美美), Cheng Yu(于程). Chin. Phys. B, 2020, 29(3): 034703.
[12] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[13] Simulation of GaN micro-structured neutron detectors for improving electrical properties
Xin-Lei Geng(耿昕蕾), Xiao-Chuan Xia(夏晓川), Huo-Lin Huang(黄火林), Zhong-Hao Sun(孙仲豪), He-Qiu Zhang(张贺秋), Xing-Zhu Cui(崔兴柱), Xiao-Hua Liang(梁晓华), Hong-Wei Liang(梁红伟). Chin. Phys. B, 2020, 29(2): 027201.
[14] Molecular beam epitaxial growth of high quality InAs/GaAs quantum dots for 1.3-μ quantum dot lasers
Hui-Ming Hao(郝慧明), Xiang-Bin Su(苏向斌), Jing Zhang(张静), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(7): 078104.
[15] Modulation of magnetic and electrical properties of bilayer graphene quantum dots using rotational stacking faults
Hong-Ping Yang(杨宏平), Wen-Juan Yuan(原文娟), Jun Luo(罗俊), Jing Zhu(朱静). Chin. Phys. B, 2019, 28(7): 078106.
No Suggested Reading articles found!