Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 018707    DOI: 10.1088/1674-1056/25/1/018707
Special Issue: TOPICAL REVIEW — 8th IUPAP International Conference on Biological Physics
TOPICAL REVIEW—8th IUPAP International Conference on Biological Physics Prev   Next  

Multiscale molecular dynamics simulations of membrane remodeling by Bin/Amphiphysin/Rvs family proteins

Chun Chan(陈骏)1,2, Haohua Wen(文豪华)1, Lanyuan Lu(鲁兰原)3, Jun Fan(范俊)1,2
1. Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China;
2. City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China;
3. School of Biological Sciences, Nanyang Technological University, Singapore
Abstract  Membrane curvature is no longer thought of as a passive property of the membrane; rather, it is considered as an active, regulated state that serves various purposes in the cell such as between cells and organelle definition. While transport is usually mediated by tiny membrane bubbles known as vesicles or membrane tubules, such communication requires complex interplay between the lipid bilayers and cytosolic proteins such as members of the Bin/Amphiphysin/Rvs (BAR) superfamily of proteins. With rapid developments in novel experimental techniques, membrane remodeling has become a rapidly emerging new field in recent years. Molecular dynamics (MD) simulations are important tools for obtaining atomistic information regarding the structural and dynamic aspects of biological systems and for understanding the physics-related aspects. The availability of more sophisticated experimental data poses challenges to the theoretical community for developing novel theoretical and computational techniques that can be used to better interpret the experimental results to obtain further functional insights. In this review, we summarize the general mechanisms underlying membrane remodeling controlled or mediated by proteins. While studies combining experiments and molecular dynamics simulations recall existing mechanistic models, concurrently, they extend the role of different BAR domain proteins during membrane remodeling processes. We review these recent findings, focusing on how multiscale molecular dynamics simulations aid in understanding the physical basis of BAR domain proteins, as a representative of membrane-remodeling proteins.
Keywords:  membrane curvature      membrane remodeling protein      molecular dynamics      coarse-graining  
Received:  18 May 2015      Revised:  26 August 2015      Accepted manuscript online: 
PACS:  87.15.ap (Molecular dynamics simulation)  
  87.15.H- (Dynamics of biomolecules)  
  87.15.K- (Molecular interactions; membrane-protein interactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21403182) and the Research Grants Council of Hong Kong, China (Grant No. CityU 21300014).
Corresponding Authors:  Jun Fan     E-mail:  junfan@cityu.edu.hk

Cite this article: 

Chun Chan(陈骏), Haohua Wen(文豪华), Lanyuan Lu(鲁兰原), Jun Fan(范俊) Multiscale molecular dynamics simulations of membrane remodeling by Bin/Amphiphysin/Rvs family proteins 2016 Chin. Phys. B 25 018707

[1] Pichot C S, Arvanitis C, Hartig S M, Jensen S A, Bechill J, Marzouk S, Yu J, Frost J A and Corey S J 2010 Cancer Res. 70 8347
[2] Hu J, Mukhopadhyay A and Craig A W B 2011 J. Biol. Chem. 286 2261
[3] Teasdale R D and Collins B M 2012 Biochem. J. 441 39
[4] Roth T F, Roth T F, Porter K R and Porter K R 1964 J. Cell Biol. 20 313
[5] Takei K, Slepnev V I, Haucke V and De Camilli P 1999 Nat. Cell Biol. 1 33
[6] Wendland B, Steece K E and Emr S D 1999 EMBO J. 18 4383
[7] Ford M G J, Mills I G, Peter B J, Vallis Y, Praefcke G J K, Evans P R and McMahon H T 2002 Nature 419 361
[8] Peter B J, Kent H M, Mills I G, Vallis Y, Butler P J G, Evans P R and McMahon H T 2004 Science 303 495
[9] Shimada A, Niwa H, Tsujita K, Suetsugu S, Nitta K, Hanawa-Suetsugu K, Akasaka R, Nishino Y, Toyama M, Chen L, Liu Z J, Wang B C, Yamamoto M, Terada T, Miyazawa A, Tanaka A, Sugano S, Shirouzu M, Nagayama K, Takenawa T and Yokoyama S 2007 Cell 129 761
[10] Cooke I R and Deserno M 2006 Biophys. J. 91 487
[11] McMahon H T and Boucrot E 2015 J. Cell Sci. 128 1065
[12] Kirchhausen T 2000 Nat. Rev. Mol. Cell Biol. 1 187
[13] McMahon H T and Boucrot E 2011 Nat. Rev. Mol. Cell Biol. 12 517
[14] Fertuck H C and Salpeter M M 1974 Proceedings of the National Academy of Sciences 71 1376
[15] MacKinnon R 2003 FEBS Lett. 555 62
[16] Unwin N 2005 J. Mol. Biol. 346 967
[17] Aimon S, Callan-Jones A, Berthaud A, Pinot M, Toombes G E S and Bassereau P 2014 Dev. Cell 28 212
[18] Fribourg P F, Chami M, Sorzano C O S, Gubellini F, Marabini R, Marco S, Jault J M and Lévy D 2014 J. Mol. Biol. 426 2059
[19] Doherty G J and McMahon H T 2008 Annu. Rev. Biophys. 37 65.
[20] Leikin S, Kozlov M M, Fuller N L and Rand R P 1996 Biophys. J. 71 2623
[21] Ford M G, Pearse B M, Higgins M K, Vallis Y, Owen D J, Gibson A, Hopkins C R, Evans P R and McMahon H T 2001 Science 291 1051
[22] Di Paolo G and De Camilli P 2006 Nature 443 651
[23] Chernomordik L V and Kozlov M M 2003 Annu. Rev. Biochem. 72 175
[24] Zimmerberg J and Kozlov M M 2006 Nat. Rev. Mol. Cell Biol. 7 9
[25] Bigay J and Antonny B 2012 Dev. Cell 23 886
[26] Pinot M, Vanni S, Pagnotta S, Lacas-Gervais S, Payet L A, Ferreira T, Gautier R, Goud B, Antonny B and Barelli H 2014 Science 345 693
[27] Rao Y and Haucke V 2011 Cellular Mol. Life Sci. 68 3983
[28] Mim C and Unger V M 2012 Trends Biochem. Sci. 37 526
[29] Hinshaw J E and Schmid S L 1995 Nature 374 190
[30] McMahon H T and Gallop J L 2005 Nature 438 590
[31] Zimmerberg J and McLaughlin S 2004 Curr. Biol. 14 R250
[32] Bhatia V K, Madsen K L, Bolinger P Y, Kunding A, Hedegård P, Gether U and Stamou D 2009 EMBO J. 28 3303
[33] Cui H, Lyman E and Voth G A 2011 Biophys. J. 100 1271
[34] Farsad K, Ringstad N, Takei K, Floyd S R, Rose K and De Camilli P 2001 J. Cell Biol. 155 193
[35] Razzaq A, Robinson I M, McMahon H T, Skepper J N, Su Y, Zelhof A C, Jackson A P, Gay N J and O'Kane C J 2001 Genes & Development 15 2967
[36] Richnau N, Fransson A, Farsad K and Aspenström P 2004 Biochem. Biophys. Res. Commun. 320 1034
[37] Marks B, Stowell M H, Vallis Y, Mills I G, Gibson A, Hopkins C R and McMahon H T 2001 Nature 410 231
[38] Wigge P, Köhler K, Vallis Y, Doyle C A, Owen D, Hunt S P and McMahon H T 1997 Mol. Biol. Cell 8 2003
[39] Sweitzer S M and Hinshaw J E 1998 Cell 93 1021
[40] Campelo F, McMahon H T and Kozlov M M 2008 Biophys. J. 95 2325
[41] McMahon H T, Kozlov M M and Martens S 2010 Cell 140 601
[42] Drin G and Antonny B 2010 FEBS Lett. 584 1840
[43] Martens S, Kozlov M M and McMahon H T 2007 Science 316 1205
[44] Hui E, Johnson C P, Yao J, Dunning F M and Chapman E R 2009 Cell 138 709
[45] Groffen A J, Martens S, Díez Arazola R, Cornelisse L N, Lozovaya N, de Jong A P H, Goriounova N A, Habets R L P, Takai Y, Borst J G, Brose N, McMahon H T and Verhage M 2010 Science 327 1614
[46] Daumke O, Lundmark R, Vallis Y, Martens S, Butler P J G and McMahon H T 2007 Nature 449 923
[47] Plomann M, Wittmann J G and Rudolph M G 2010 J. Mol. Biol. 400 129
[48] Copic A, Latham C F, Horlbeck M A, D'Arcangelo J G and Miller E A 2012 Science 335 1359
[49] Boudin H, Doan A, Xia J, Shigemoto R, Huganir R L, Worley P and Craig A M 2000 Neuron 28 485
[50] Eckler S A, Kuehn R and Gautam M 2005 Neuroscience 131 661
[51] Ehrlich M, Boll W, van Oijen A, Hariharan R, Chandran K, Nibert M L and Kirchhausen T 2004 Cell 118 591
[52] Stachowiak J C, Schmid E M, Ryan C J, Ann H S, Sasaki D Y, Sherman M B, Geissler P L, Fletcher D A and Hayden C C 2012 Nat. Cell Biol. 14 944
[53] Kozlov M M, Campelo F, Liska N, Chernomordik L V, Marrink S J and McMahon H T 2014 Curr. Opin. Cell Biol. 29 53
[54] Frost A, Perera R, Roux A, Spasov K, Destaing O, Egelman E H, De Camilli P and Unger V M 2008 Cell 132 807
[55] Mim C, Cui H, Gawronski-Salerno J A, Frost A, Lyman E, Voth G A and Unger V M 2012 Cell 149 137
[56] Yin Y, Arkhipov A and Schulten K 2009 Structure 17 882
[57] Arkhipov A, Yin Y and Schulten K 2009 Biophys. J. 97 2727
[58] Yu H and Schulten K 2013 PLoS Comput. Biol. 9 e1002892
[59] Praefcke G J K and McMahon H T 2004 Nat. Rev. Mol. Cell Biol. 5 133
[60] Ferguson S M and De Camilli P 2012 Nat. Rev. Mol. Cell Biol. 13 75
[61] Faelber K, Held M, Gao S, Posor Y, Haucke V, Noé F and Daumke O 2012 Structure 20 1621
[62] Morlot S and Roux A 2013 Annu. Rev. Biophys. 42 629
[63] Jensen D and Schekman R 2011 J. Cell Sci. 124 1
[64] Zanetti G, Pahuja K B, Studer S, Shim S and Schekman R 2012 Nat. Cell Biol. 14 20
[65] Shibata Y, Hu J, Kozlov M M and Rapoport T A 2009 Annu. Rev. Cell Dev. Biol. 25 329
[66] Hu J, Prinz W A and Rapoport T A 2011 Cell 147 1226
[67] Parton R G and del Pozo M A 2013 Nat. Rev. Mol. Cell Biol. 14 98
[68] Sheetz M P 2001 Nat. Rev. Mol. Cell Biol. 2 392
[69] Rohn J L and Baum B 2010 J. Cell Sci. 123 155
[70] Leduc C, Campás O, Joanny J F, Prost J and Bassereau P 2010 Biochimica et Biophysica Acta 1798 1418
[71] Ren G, Vajjhala P, Lee J S, Winsor B and Munn A L 2006 Microbiol. Mol. Biol. Rev. 70 37
[72] Qualmann B, Koch D and Kessels M M 2011 EMBO J. 30 3501
[73] Isas J M, Ambroso M R, Hegde P B, Langen J and Langen R 2015 Structure 23 873
[74] Gallop J L, Jao C C, Kent H M, Butler P J G, Evans P R, Langen R and McMahon H T 2006 EMBO J. 25 2898
[75] B D, M T and S L 2011 Biochem. J. 433 75
[76] Tarricone C, Xiao B, Justin N, Walker P A, Rittinger K, Gamblin S J and Smerdon S J 2001 Nature 411 215
[77] Weissenhorn W 2005 J. Mol. Biol. 351 653
[78] Heath R J W and Insall R H 2008 J. Cell Sci. 121 1951
[79] Roberts-Galbraith R H and Gould K L 2010 Cell Cycle 9 4091
[80] Pang X, Fan J, Zhang Y, Zhang K, Gao B, Ma J and Li J 2014 Dev. Cell 31 73
[81] Saarikangas J, Zhao H, Inen A P l, Ki P L, Mattila P K, Kinnunen P K J, Butcher S J and Lappalainen P 2009 Curr. Biol. 19 95
[82] Zhao H, Pykäläinen A and Lappalainen P 2011 Curr. Opin. Cell Biol. 23 14
[83] Pykäläinen A, Boczkowska M, Zhao H, Saarikangas J, Rebowski G, Jansen M, Hakanen J, Koskela E V, Peränen J, Vihinen H, Jokitalo E, Salminen M, Ikonen E, Dominguez R and Lappalainen P 2011 Nat. Struct. Mol. Biol. 18 902
[84] McCammon J A, Gelin B R and Karplus M 1977 Nature 267 585
[85] Karplus M and McCammon J A 2002 Nat. Struct. Biol. 9 646
[86] Brooks B R, Bruccoleri R E, Olafson B D, States D J, Swaminathan S and Karplus M 1983 J. Comput. Chem. 4 187
[87] Weiner P K and Kollman P A 1981 J. Comput. Chem. 2 287
[88] MacKerell A D, Bashford D, Bellott M, Dunbrack R L, Evanseck J D, Field M J, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau F T K, Mattos C, Michnick S, Ngo T, Nguyen D T, Prodhom B, Reiher W E, Roux B, Schlenkrich M, Smith J C, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D and Karplus M 1998 J. Phys. Chem. B 102 3586
[89] Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kale L and Schulten K 2005 J. Comput. Chem. 26 1781
[90] van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E and Berendsen H J C 2005 J. Comput. Chem. 26 1701
[91] Blood P D and Voth G A 2006 Proceedings of the National Academy of Sciences 103 15068
[92] Blood P D, Swenson R D and Voth G A 2008 Biophys. J. 95 1866
[93] Arkhipov A, Yin Y and Schulten K 2008 Biophys. J. 95 2806
[94] Ayton G S, Blood P D and Voth G A 2007 Biophys. J. 92 3595
[95] Ayton G S, Lyman E, Krishna V, Mim C, Unger V M and Voth G A 2009 Biophys. J. 97 1616
[96] Masuda M, Takeda S, Sone M, Ohki T and Mori H 2006 EMBO J. 25 2889
[97] Cui H, Ayton G S and Voth G A 2009 Biophys. J. 97 2746
[98] Cui H, Mim C, Vázquez F X, Lyman E and Unger V M 2013 Biophys. J. 104 404
[99] Fütterer K and Machesky L M 2007 Cell 129 655
[100] Henne W M, Kent H M, Ford M G J, Hegde B G, Daumke O, Butler P J G, Mittal R, Langen R, Evans P R and McMahon H T 2007 Structure 15 839
[101] Henne W M, Boucrot E, Meinecke M, Evergren E, Vallis Y, Mittal R and McMahon H T 2010 Science 328 1281
[102] Frost A, Unger V M and de Camilli P 2009 Cell 137 191
[103] Quinones G A and Oro A E 2010 Cell Cycle 9 2522
[104] Lumb C N, He J, Xue Y, Stansfeld P J, Stahelin R V, Kutateladze T G and Sansom M S P 2011 Structure 19 1338
[105] Lai C L, Srivastava A, Pilling C, Chase A R, Falke J J and Voth G A 2013 J. Mol. Biol. 425 3073
[106] Arkhipov A, Freddolino P L and Schulten K 2006 Structure 14 1767
[107] Martinetz T and Schulten K 1994 Neural Netw. 7 507
[108] Simunovic M, Srivastava A and Voth G A 2013 Proceedings of the National Academy of Sciences 110 20396
[109] Zhang Z, Lu L, Noid W G, Krishna V, Pfaendtner J and Voth G A 2008 Biophys. J. 95 5073
[110] Zhang Z, Pfaendtner J, Grafmuller A and Voth G A 2009 Biophys. J. 97 2327
[111] Izvekov S and Voth G A 2005 J. Phys. Chem. B 109 2469
[112] Lu L and Voth G A 2009 J. Phys. Chem. B 113 1501
[113] Srivastava A and Voth G A 2013 J. Chem. Theor. Comput. 9 750
[114] Srivastava A and Voth G A 2014 J. Chem. Theor. Comput. 10 4730
[115] Lyman E, Pfaendtner J and Voth G A 2008 Biophys. J. 95 4183
[116] Ayton G S, McWhirter J L and Voth G A 2006 J. Chem. Phys. 124 64906
[117] Ayton G S and Voth G A 2009 Curr. Opin. Struct. Biol. 19 138
[118] Simunovic M, Mim C, Marlovits T C, Resch G, Unger V M and Voth G A 2013 Biophys. J. 105 711
[119] Pylypenko O, Lundmark R, Rasmuson E, Carlsson S R and Rak A 2007 EMBO J. 26 4788
[120] Wang Q, Kaan H Y K, Hooda R N, Goh S L and Sondermann H 2008 Structure 16 1574
[121] Psachoulia E and Sansom M S P 2009 Biochemistry 48 5090
[122] Dannhauser P N and Ungewickell E J 2012 Nat. Cell Biol. 14 634
[1] Coarse-grained simulations on interactions between spectrins and phase-separated lipid bilayers
Xuegui Lin(林雪桂), Xiaojie Chen(陈晓洁), and Qing Liang(梁清). Chin. Phys. B, 2021, 30(6): 068701.
[2] Morphologies of a spherical bimodal polyelectrolyte brush induced by polydispersity and solvent selectivity
Qing-Hai Hao(郝清海) and Jie Cheng(成洁). Chin. Phys. B, 2021, 30(6): 068201.
[3] Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys
Shijun Zhao(赵仕俊). Chin. Phys. B, 2021, 30(5): 056111.
[4] Mechanical property and deformation mechanism of gold nanowire with non-uniform distribution of twinned boundaries: A molecular dynamics simulation study
Qi-Xin Xiao(肖启鑫), Zhao-Yang Hou(侯兆阳), Chang Li(李昌), and Yuan Niu(牛媛). Chin. Phys. B, 2021, 30(5): 056101.
[5] Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins
Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉). Chin. Phys. B, 2021, 30(3): 038701.
[6] Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness
Jian Li(李健), Bo-kai Zhang(张博凯), and Yu-Shan Li(李玉山). Chin. Phys. B, 2021, 30(3): 036104.
[7] Understanding defect production in an hcp Zr crystal upon irradiation: An energy landscape perspective
Jiting Tian(田继挺). Chin. Phys. B, 2021, 30(2): 026102.
[8] Tolman length of simple droplet: Theoretical study and molecular dynamics simulation
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Qiang Li(李强), Wei-Wei Liu(刘伟伟), Ping Qian(钱萍), and Xiao Song Wang(王小松). Chin. Phys. B, 2021, 30(1): 016801.
[9] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[10] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[11] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[12] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[13] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
[14] Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation
Minrong An(安敏荣), Mengjia Su(宿梦嘉), Qiong Deng(邓琼), Haiyang Song(宋海洋), Chen Wang(王晨), Yu Shang(尚玉). Chin. Phys. B, 2020, 29(4): 046201.
[15] Influence of external load on friction coefficient of Fe-polytetrafluoroethylene
Xiu-Hong Hao(郝秀红), Deng Pan(潘登), Ze-Yang Zhang(张泽洋), Shu-Qiang Wang(王树强), Yu-Jin Gao(高玉金), Da-Peng Gu(谷大鹏). Chin. Phys. B, 2020, 29(4): 046802.
No Suggested Reading articles found!