Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 016802    DOI: 10.1088/1674-1056/25/1/016802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Phase transition and critical behavior ofspin-orbital coupled spinel ZnV2O4

Li Wang(王理)1, Rong-juan Wang(王蓉娟)1, Yuan-yuan Zhu(朱媛媛)2, Zhi-hong Lu(卢志红)3,Rui Xiong(熊锐)1, Yong Liu(刘雍)1, Jing Shi(石兢)1
1. Key Laboratory of Artificial Micro-and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China;
2. High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China;
3. School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
Abstract  

We present the temperature-dependent susceptibility and specific heat measurement of spinel ZnV2O4. The structural transition with orbital ordering and the antiferromagnetic transition with spin ordering were observed at 50 K and 37 K, respectively. By analysis of the hysteresis behavior between the specific heat curves obtained in warming and cooling processes, the structural transition was confirmed to be the first-order transition, while the antiferromagnetic transition was found to be of the second-order type. At the structural transition, the latent heat and entropy change were calculated from the excess specific heat, and the derivative of pressure with respect to temperature was obtained using the Clausius-Clapayron equation. At the magnetic transition, the width of the critical fluctuation region was obtained to be about 0.5 K by comparing with Gaussian fluctuations. In the critical region, the critical behavior was analyzed by using renormalization-group theory. The critical amplitude ratio A+ /A-=1.46, which deviates from the 3D Heisenburg model; while the critical exponent α is -0.011, which is close to the 3D XY model. We proposed that these abnormal critical behaviors can be attributed to strong spin-orbital coupling accompanied with the antiferromagnetic transition. Moreover, in the low temperature range (2-5 K), the Fermi energy, the density of states near the Fermi surface, and the low limit of Debye temperature were estimated to be 2.42 eV, 2.48 eV-1, and 240 K, respectively.

Keywords:  spinel compounds      specific heat      phase transition      critical behavior  
Received:  05 August 2015      Revised:  09 September 2015      Accepted manuscript online: 
PACS:  68.35.Rh (Phase transitions and critical phenomena)  
  75.40.-s (Critical-point effects, specific heats, short-range order)  
  64.60.-i (General studies of phase transitions)  
  82.60.Fa (Heat capacities and heats of phase transitions)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2012CB821404), the National Natural Science Foundation of China (Grant Nos. 51172166 and 61106005), the National Science Fund for Talent Training in Basic Science, China (Grant No. J1210061), and the Doctoral Fund of Ministry of Education of China (Grant No. 20110141110007).

Corresponding Authors:  Yong Liu, Jing Shi     E-mail:  yongliu@whu.edu.cn;jshi@whu.edu.cn

Cite this article: 

Li Wang(王理), Rong-juan Wang(王蓉娟), Yuan-yuan Zhu(朱媛媛), Zhi-hong Lu(卢志红),Rui Xiong(熊锐), Yong Liu(刘雍), Jing Shi(石兢) Phase transition and critical behavior ofspin-orbital coupled spinel ZnV2O4 2016 Chin. Phys. B 25 016802

[1] Butt F K, Cao C, Ahmed R, Khan W S, Cao T, Bidin N, Li P, Wan Q, Qu X, Tahir M and Idrees F 2014 Cryst. Eng. Comm. 16 894
[2] Butt F K, Tahir M, Cao C, Idrees F, Ahmed R, Khan W S, Ali Z, Mahmood N, Tanveer M, Mahmood A and Aslam I 2014 ACS Appl. Mater. Inter. 6 13635
[3] Xiao L, Zhao Y, Yin J and Zhang L 2009 Chemistry 15 9442
[4] Butt F K, Cao C, Wan Q, Li P, Idrees F, Tahir M, Khan W S, Ali Z, Zapata M J M, Safdar M and Qu X 2014 Int. J. Hydrogen. Energ. 39 7842
[5] Anderson P W 1956 Phys. Rev. 102 1008
[6] Reehuis M, Krimmel A, Büttgen N, Loidl A and Prokofiev A 2003 Eur. Phys. J. B 35 311
[7] Ueda Y, Fujiwara N and Yasuoka H 1997 J. Phys. Soc. Jpn. 66 778
[8] Maitra T and Valentí R 2007 Phys. Rev. Lett. 99 126401
[9] Tsunetsugu H and Motome Y 2003 Phys. Rev. B 68 060405(R)
[10] Motome Y and Tsunetsugu H 2005 Prog. Theor. Phys. Suppl. 160 203
[11] Tchernyshyov O 2004 Phys. Rev. Lett. 93 157206
[12] Niziol S 1973 Phys. Stat. Sol. A 18 K11
[13] Izyumov Yu A, Naish V E and Petrov S B 1979 J. Magn. Magn. Mater. 13 267
[14] Vasiliev A N, Markina M M, Isobe M and Ueda Y 2006 J. Magn. Magn. Mater. 300 e375-
[15] Feng D, Jin G J 2013 Condensed Matter Physics (Volume II) (Beijing: Higher Education Press) (in Chinese) pp. 32-36, 66-69
[16] Zhang L, Han H, Qu Z, Fan J, Ling L, Zhang C, Pi L and Zhang Y 2014 J. Appl. Phys. 115 233910
[17] Luo X, Yang Z R, Sun Y P, Zhu X B, Song W H and Dai J M 2009 J. Appl. Phys. 106 113920
[18] Ebbinghaus S G, Hanss J, Klemm M and Horn S 2004 J. Alloys Compd. 370 75
[19] Lee S H, Louca D, Ueda H, Park S, Sato T, Isobe M, Ueda Y, Rosenkranz S, Zschack P, Íñiguez J, Qiu Y and Osborn R 2004 Phys. Rev. Lett. 93 156407
[20] Tari A 2003 The Specific Heat of Matter at Low Temperatures (London: Imperial College Press) pp. 33, 66, 152-153
[21] Myung-Whun K, Kim J S, Katsufuji T and Kremer R K 2011 Phys. Rev. B 83 024403
[22] Lu D, Jiang P and Xu Z Z 2003 Solid State Physics (Shanghai: Shanghai Science and Technology Press) (in Chinese) pp. 113, 79
[23] Fujimoto M 2005 The Physics of Structural Phase Transitions (Berlin: Springer-Verlag) p. 7
[24] Chandra P 1989 J. Phys: Condens. Matter 1 10067
[25] Mozurkewich G 1991 Phys. Rev. Lett. 66 1645
[26] Gamzatov A G, Khizriev K S, Batdalov A B, Abdulvagidov S B, Aliev A M, Melnikov O V and Gorbenko O Y 2009 Low Temp. Phys. 35 214
[27] Gamzatov A G, Aliev A M, Khizriev K S, Abdulvagidov S B, Batdalov A B, Gorbenko O Y and Melnikov O V 2007 Physica B 390 155
[28] Gamzatov A G, Aliev A M, Khizriev K S, Kamilov I K and Mankevich A S 2011 J. Alloys Compd. 509 8295
[29] Guida R and Zinn-Justin J 1998 J. Phys. A: Math. Gen. 31 8103
[30] Campostrini M, Hasenbusch M, Pelisseto A, Rossi P and Vicari E 2001 Phys. Rev. B 63 214503
[31] Campostrini M, Hasenbusch M, Pelisseto A, Rossi P and Vicari E 2002 Phys. Rev. B 65 144520
[32] Oleaga A, Salazar A, Thamizhavel A and Dhar S K 2014 J. Alloys Compd. 617 534
[1] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[2] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[3] Phase transition of shocked water up to 6 GPa: Transmittance investigation
Lang Wu(吴浪), Yue-Hong Ren(任月虹), Wen-Qiang Liao(廖文强), Xi-Chen Huang(黄曦晨), Fu-Sheng Liu(刘福生), Ming-Jian Zhang(张明建), and Yan-Yun Sun(孙燕云). Chin. Phys. B, 2021, 30(5): 050701.
[4] Absence of magnetic order in dichloro [1,2-bis (diphenylphosphino) ethane] nickel2 + single crystal
Shuaiqi Ma(马帅奇), Linlin An(安琳琳), and Xiangde Zhu(朱相德). Chin. Phys. B, 2021, 30(5): 057501.
[5] Phase transition of asymmetric diblock copolymer induced by nanorods of different properties
Yu-Qi Guo(郭宇琦). Chin. Phys. B, 2021, 30(4): 048301.
[6] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[7] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[8] Detailed structural, mechanical, and electronic study of five structures for CaF2 under high pressure
Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊). Chin. Phys. B, 2021, 30(3): 030502.
[9] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[10] Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(3): 036501.
[11] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[12] Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics
Li Zhang(张莉), Wenjie Liu(柳文洁), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(2): 026701.
[13] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[14] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[15] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
No Suggested Reading articles found!