Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 014703    DOI: 10.1088/1674-1056/25/1/014703

Predetermined control of turbulent boundary layer with a piezoelectric oscillator

Xiao-Bo Zheng(郑小波)1, Nan Jiang(姜楠)1,2, Hao Zhang(张浩)1
1. Department of Mechanics, Tianjin University, Tianjin 300072, China;
2. Tianjin Key Laboratory of Modern Engineering Mechanics, Tianjin 300072, China

With a piezoelectric (PZT) oscillator, the predetermined controls of the turbulent boundary layer (TBL) are effective in reducing the drag force. The stream-wise velocities in the TBL are accurately measured downstream of the oscillator driven by an adjustable power source. The mean velocity profiles in the inner and outer scales are reported and the skin friction stresses with different voltage parameters are compared. Reduction of integral spatial scales in the inner region below y+ of 30 suggests that the oscillator at work breaks up the near-wall stream-wise vortices responsible for high skin friction. For the TBL at Reθ of 2183, the controls with a frequency of 160 Hz are superior among our experiments and a relative drag reduction rate of 26.83% is exciting. Wavelet analyses provide a reason why the controls with this special frequency perform best.

Keywords:  turbulent boundary layer      predetermined control      drag reduction      piezoelectric oscillator  
Received:  03 May 2015      Revised:  10 August 2015      Published:  05 January 2016
PACS: (Drag reduction)  
  47.85.ld (Boundary layer control)  
  47.27.nb (Boundary layer turbulence ?)  
  47.27.De (Coherent structures)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11332006, 11272233, and 11411130150) and the National Basic Research Program of China (Grant Nos. 2012CB720101 and 2012CB720103).

Corresponding Authors:  Nan Jiang     E-mail:

Cite this article: 

Xiao-Bo Zheng(郑小波), Nan Jiang(姜楠), Hao Zhang(张浩) Predetermined control of turbulent boundary layer with a piezoelectric oscillator 2016 Chin. Phys. B 25 014703

[1] Robinson S K 1991 Annu. Rev. Fluid Mech. 23 601
[2] Wang W, Guan X L and Jiang N 2014 Chin. Phys. B 23 104703
[3] Wang L and Lu X Y 2011 Chin. Phys. Lett. 28 034703
[4] Zheng X B and Jiang N 2015 Acta Mech. Sin. 31 16
[5] Hu H B, Du P, Huang S H and Wang Y 2013 Chin. Phys. B 22 074703
[6] Tang Z Q and Jiang N 2011 Chin. Phys. Lett. 28 054702
[7] Kim J 2011 Philos. Trans. R. Soc. A 369 1396
[8] Kravchenko A G, Choi H and Moin P 1993 Phys. Fluids A 5 3307
[9] Duguet Y, Schlatter P, Henningson D S and Eckhardt B 2012 Phys. Rev. Lett. 108 044501
[10] Lang S S, Geng X G and Zang D Y 2014 Acta Phys. Sin. 63 084704 (in Chinese)
[11] Duriez T, Aider J L and Wesfreid J E 2009 Phys. Rev. Lett. 103 144502
[12] Wu W T, Hong Y J and Fan B C 2014 Acta Phys. Sin. 63 054702 (in Chinese)
[13] Bechert D W and Bartenwerfer M 1989 J. Fluid Mech. 206 105
[14] Dubief Y, White C M, Terrapon V E, Shaqfeh E S G, Moin P and Lele S K 2004 J. Fluid Mech. 514 271
[15] Wang B, Wang J D and Chen D R 2014 Acta Phys. Sin. 63 074702 (in Chinese)
[16] Min T and Kim J 2004 Phys. Fluids 16 L55
[17] van den Berg T H, van Gils D P M, Lathrop D P and Lohse D 2007 Phys. Rev. Lett. 98 084501
[18] Gu Y Q, Mou J G, Dai D S, Zheng S H, Jiang L F, Wu D H, Ren Y and Liu F Q 2015 Acta Phys. Sin. 64 024701 (in Chinese)
[19] Rathnasingham R and Breuer K S 2003 J. Fluid Mech. 495 209
[20] Kim J 2003 Phys. Fluids 15 1093
[21] Deng B Q and Xu C X 2012 J. Fluid Mech. 710 234
[22] Cattafesta L N and Sheplak M 2011 Annu. Rev. Fluid Mech. 43 247
[23] Lee C, Hong G, Ha Q P and Mallinson S G 2003 Sens. Actuators A 108 168
[24] Crawley E F and de Luis J 1987 AIAA J. 25 1373
[25] Zheng X B and Jiang N 2015 Chin. Phys. B 24 064702
[26] Söderkvist J 1991 J. Acoust. Soc. Am. 90 686
[27] Cattafesta L N, Garg S and Shukla D 2001 AIAA J. 39 1562
[28] Hutchins N, Nickels T B, Marusic I and Chong M S 2009 J. Fluid Mech. 635 103
[29] Ligrani P M and Bradshaw P 1987 Exp. Fluids 5 407
[30] Kim J, Moin P and Moser R 1987 J. Fluid Mech. 177 133
[31] DeGraaff D B and Eaton J K 2000 J. Fluid Mech. 422 319
[32] Stefes B and Fernholz H H 2004 Eur. J. Mech. B 23 303
[33] Patel V C and Head M R 1969 J. Fluid Mech. 38 181
[34] Xin Y B, Xia K Q and Tong P 1996 Phys. Rev. Lett. 77 1266
[35] Camussi R and Guj G 1997 J. Fluid Mech. 348 177
[36] Farge M 1992 Annu. Rev. Fluid Mech. 24 395
[37] Jiménez J 2012 Annu. Rev. Fluid Mech. 44 27
[1] Influence of uniform momentum zones on frictional drag within the turbulent boundary layer
Kangjun Wang(王康俊) and Nan Jiang(姜楠). Chin. Phys. B, 2021, 30(3): 034703.
[2] Effect of high-or low-speed fluctuations on the small-scale bursting events in an active control experiment
Xiao-Tong Cui(崔晓通), Nan Jiang(姜楠), and Zhan-Qi Tang(唐湛棋). Chin. Phys. B, 2021, 30(1): 014702.
[3] Active control of wall-bounded turbulence for drag reduction with piezoelectric oscillators
Jian-Xia Bai(白建侠), Nan Jiang(姜楠), Xiao-Bo Zheng(郑小波), Zhan-Qi Tang(唐湛琪), Kang-Jun Wang(王康俊), Xiao-Tong Cui(崔晓通). Chin. Phys. B, 2018, 27(7): 074701.
[4] Drag reduction characteristics of heated spheres falling into water
Jia-Chuan Li(李佳川), Ying-Jie Wei(魏英杰), Cong Wang(王聪), Wei-Xue Xia(夏维学). Chin. Phys. B, 2018, 27(12): 124703.
[5] Coherent structures over riblets in turbulent boundary layer studied by combining time-resolved particle image velocimetry (TRPIV), proper orthogonal decomposition (POD), and finite-time Lyapunov exponent (FTLE)
Shan Li(李山), Nan Jiang(姜楠), Shaoqiong Yang(杨绍琼), Yongxiang Huang(黄永祥), Yanhua Wu(吴彦华). Chin. Phys. B, 2018, 27(10): 104701.
[6] Experimental investigation on underwater drag reduction using partial cavitation
Bao Wang(王宝), Jiadao Wang(汪家道), Darong Chen(陈大融), Na Sun(孙娜), Tao Wang(王涛). Chin. Phys. B, 2017, 26(5): 054701.
[7] Direct numerical simulation of viscoelastic-fluid-based nanofluid turbulent channel flow with heat transfer
Yang Juan-Cheng, Li Feng-Chen, Cai Wei-Hua, Zhang Hong-Na, Yu Bo. Chin. Phys. B, 2015, 24(8): 084401.
[8] A new mixed subgrid-scale model for large eddy simulation of turbulent drag-reducing flows of viscoelastic fluids
Li Feng-Chen, Wang Lu, Cai Wei-Hua. Chin. Phys. B, 2015, 24(7): 074701.
[9] Convection and correlation of coherent structure in turbulent boundary layer using tomographic particle image velocimetry
Wang Wei, Guan Xin-Lei, Jiang Nan. Chin. Phys. B, 2014, 23(10): 104703.
[10] Universal form of the power spectrum of the aero-optical aberration caused by the supersonic turbulent boundary layer
Gao Qiong, Yi Shi-He, Jiang Zong-Fu. Chin. Phys. B, 2014, 23(10): 104201.
[11] Temporal evolution of optical path difference of a supersonic turbulent boundary layer
Gao Qiong, Yi Shi-He, Jiang Zong-Fu, He Lin, Xie Wen-Ke. Chin. Phys. B, 2013, 22(1): 014202.
[12] Influence of polymer additives on turbulent energy cascading in forced homogeneous isotropic turbulence studied by direct numerical simulations
Li Feng-Chen, Cai Wei-Hua, Zhang Hong-Na, Wang Yue. Chin. Phys. B, 2012, 21(11): 114701.
[13] Role of on-board discharge in shock wave drag reduction and plasma cloaking
Zeng Xue-Jun, Liu Wan-Dong, Qiu Xiao-Ming, Tang De-Li, Sun Ai-Ping. Chin. Phys. B, 2007, 16(1): 186-192.
No Suggested Reading articles found!