Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 014601    DOI: 10.1088/1674-1056/25/1/014601
Special Issue: TOPICAL REVIEW — Fundamental physics research in lithium batteries
TOPICAL REVIEW—Fundamental physics research in lithium batteries Prev   Next  

Mechanics of high-capacity electrodes in lithium-ion batteries

Ting Zhu
Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

Rechargeable batteries, such as lithium-ion batteries, play an important role in the emerging sustainable energy landscape. Mechanical degradation and resulting capacity fade in high-capacity electrode materials critically hinder their use in high-performance lithium-ion batteries. This paper presents an overview of recent advances in understanding the electrochemically-induced mechanical behavior of the electrode materials in lithium-ion batteries. Particular emphasis is placed on stress generation and facture in high-capacity anode materials such as silicon. Finally, we identify several important unresolved issues for future research.

Keywords:  lithium-ion batteries      mechanics      electrochemistry      silicon  
Received:  15 August 2015      Revised:  14 November 2015      Published:  05 January 2016
PACS:  46.50.+a (Fracture mechanics, fatigue and cracks)  
  62.20.-x (Mechanical properties of solids)  
  82.45.Fk (Electrodes)  

Project support by the NSF (Grant Nos. CMMI 1100205 and DMR 1410936).

Corresponding Authors:  Ting Zhu     E-mail:

Cite this article: 

Ting Zhu Mechanics of high-capacity electrodes in lithium-ion batteries 2016 Chin. Phys. B 25 014601

[1] Tarascon J M and Armand M 2001 Nature 414 359
[2] Dunn B, Kamath H and Tarascon J M 2011 Science 334 928
[3] Goodenough J B and Kim Y 2010 Chem. Mater. 22 587
[4] Huggins R A and Nix W D 2000 Ionics 6 57
[5] Beaulieu LY, Eberman K W, Turner R L, Krause L J and Dahn J R 2001 Electrochem. Solid State Lett. 4 A137
[6] Chan C K, Peng H L, Liu G, McIlwrath K, Zhang X F, Huggins R A and Cui Y 2008 Nat. Nanotech. 3 31
[7] Cheng Y T and Verbrugge M W 2009 J. Power Sources 190 453
[8] Zhao K, Pharr M, Vlassak J J and Suo Z 2010 J. Appl. Phys. 108 073517
[9] Sethuraman V A, Chon M J, Shimshak M, Srinivasan V and Guduru P R 2010 J. Power Sources 195 5062
[10] Liu X H, Wang J W, Huang S, Fan F, Huang X, Liu Y, Krylyuk S, Yoo J, Dayeh S A, Davydov A V, Mao S X, Picraux S T, Zhang S, Li J, Zhu T and Huang J Y 2012 Nat. Nanotech. 7 749
[11] Cui Z, Gao F and Qu J 2012 J. Mech. Phys. Solid. 60 1280
[12] Gao Y F and Zhou M 2011 J. Appl. Phys. 109 014310
[13] Purkayastha R and McMeeking R M 2012 J. Appl. Mech.-Trans. ASME 79 031021
[14] Li H, Huang X J, Chen L Q, Wu Z G and Liang Y 1999 Electrochem. Solid State Lett. 2 547
[15] Liu X H, Zheng H, Zhong L, Huang S, Karki K, Zhang L Q, Liu Y, Kushima A, Liang W T, Wang J W, Cho J H, Epstein E, Dayeh S A, Picraux S T, Zhu T, Li J, Sullivan J P, Cumings J, Wang C, Mao S X, Ye Z Z, Zhang S and Huang J Y 2011 Nano Lett. 11 3312
[16] Chon M J, Sethuraman V A, McCormick A, Srinivasan V and Guduru P R 2011 Phys. Rev. Lett. 107 045503
[17] Liu X H, Zhong L, Huang S, Mao S X, Zhu T and Huang J Y 2012 ACS Nano 6 1522
[18] Wang J W, He Y, Fan F, Liu X H, Xia S, Liu Y, Harris C T, Li H, Huang J Y, Mao S X and Zhu T 2013 Nano Lett. 13 709
[19] McDowell M T, Lee S W, Harris J T, Korgel B A, Wang C, Nix W D and Cui Y 2013 Nano Lett. 13 758
[20] McDowell M T, Lee S W, Nix W D and Cui Y 2013 Adv. Mater. 25 4966
[21] Woodford W H, Chiang Y M and Carter W C 2010 J. Electrochem. Soc. 157 A1052
[22] Haftbaradaran H, Xiao X C, Verbrugge M W and Gao H J 2012 J. Power Sources 206 357
[23] Wang H, Hou B, Wang X, Xia S and Chew H B 2015 Nano Lett. 15 1716
[24] Trattnig G and Leitgeb W 2014 Battery Modelling for Crash Safety Simulation In Automotive Battery Technology (ed. Thaler A and Watzenig D) p. 19
[25] Liu X H, Liu Y, Kushima A, Zhang S L, Zhu T, Li J and Huang J Y 2012 Adv. Energy Mater. 2 722
[26] Liu Y, Zhang S and Zhu T 2014 Chemelectrochem. 1 706
[27] Yan B, Lim C, Yin L and Zhu L 2012 J. Electrochem. Soc. 159 A1604
[28] Huang J Y, Zhong L, Wang C M, Sullivan J P, Xu W, Zhang L Q, Mao S X, Hudak N S, Liu X H, Subramanian A, Fan H Y, Qi L A, Kushima A and Li J 2010 Science 330 1515
[29] Liu Y, Zheng H, Liu X H, Huang S, Zhu T, Wang J W, Kushima A, Hudak N S, Huang X, Zhang S L, Mao S X, Qian X F, Li J and Huang J Y 2011 ACS Nano 5 7245
[30] Huang S, Fan F, Li J, Zhang S L and Zhu T 2013 Acta Materialia 61 4354
[31] Liu X H, Fan F, Yang H, Zhang S, Huang J Y and Zhu T 2013 ACS Nano 7 1495
[32] McDowell M T, Ryu I, Lee S W, Wang C, Nix W D and Cui Y 2012 Adv. Mater. 24 6034
[33] Gu M, Yang H, Perea D E, Zhang J G, Zhang S and Wang C M 2014 Nano Lett. 14 4622
[34] Hertzberg B, Benson J and Yushin G 2011 Electrochem. Commun. 13 818
[35] Soni S K, Sheldon B W, Xiao X C, Verbrugge M W, Ahn D, Haftbaradaran H and Gao H J 2012 J. Electrochem. Soc. 159 A38
[36] Kushima A, Huang J Y and Li J 2012 ACS Nano 6 9425
[37] Wang X, Fan F, Wang J, Wang H, Tao S, Yang A, Liu Y, Chew H B, Mao S X, Zhu T and Xia S 2015 Nat. Commun. 6 8417
[38] Boles S T, Thompson C V, Kraft O and Moenig R 2013 Appl. Phys. Lett. 103 263906
[39] Pharr M, Suo Z and Vlassak J J 2014 J. Power Sources 270 569
[40] Berla L A, Lee S W, Cui Y and Nix W D 2015 J. Power Sources 273 41
[41] Shenoy V B, Johari P and Qi Y 2010 J. Power Sources 195 6825
[42] Zhao K J, Tritsaris G A, Pharr M, Wang W L, Okeke O, Suo Z G, Vlassak J J and Kaxiras E 2012 Nano Lett. 12 4397
[43] Cui Z W, Gao F, Cui Z H and Qu J M 2012 J. Power Sources 207 150
[44] Fan F, Huang S, Yang H, Raju M, Datta D, Shenoy V B, van Duin A C T, Zhang S and Zhu T 2013 Modelling and Simulation in Materials Science and Engineering 21 074002
[45] Chevrier V L and Dahn J R 2009 J. Electrochem. Soc. 156 A454
[46] Chevrier V L and Dahn J R 2010 J. Electrochem. Soc. 157 A392
[47] Zhang Q F, Zhang W X, Wan W H, Cui Y and Wang E G 2010 Nano Lett. 10 3243
[48] Huang S and Zhu T 2011 J. Power Sources 196 3664
[49] Kim H, Chou C Y, Ekerdt J G and Hwang G S 2011 J. Phys. Chem. C 115 2514
[50] Johari P, Qi Y and Shenoy V B 2011 Nano Lett. 11 5494
[51] Zhao K J, Wang W L, Gregoire J, Pharr M, Suo Z G, Vlassak J J and Kaxiras E 2011 Nano Lett. 11 2962
[52] Chan M K Y, Wolverton C and Greeley J P 2012 J. Am. Chem. Soc. 134 14362
[53] Jung S C, Choi J W and Han Y K 2012 Nano Lett. 12 5342
[54] Argon A S and Demkowicz M J 2008 Metall. Mater. Trans. A 39A 1762
[55] Schuh C A, Hufnagel T C and Ramamurty U 2007 Acta Mater. 55 4067
[56] Zheng J, Zheng H, Wang R, Ben L, Lu W, Chen L, Chen L and Li H 2014 Phys. Chem. Chem. Phys. 16 13229
[57] Zhang LQ, Liu X H, Liu Y, Huang S, Zhu T, Gui L J, Mao S X, Ye Z Z, Wang C M, Sullivan J P and Huang J Y 2011 ACS Nano 5 4800
[58] Wu H, Chan G, Choi J W, Ryu I, Yao Y, McDowell M T, Lee S W, Jackson A, Yang Y, Hu L B and Cui Y 2012 Nat. Nanotech. 7 310
[59] Wu F, Lee J T, Fan F, Nitta N, Kim H, Zhu T and Yushin G 2015 Adv. Mater. 27 5579
[60] Jia Z and Li T 2015 J. Power Sources 275 866
[61] Gosele U and Tu K N 1982 J. Appl. Phys. 53 3252
[62] Gosele U and Tu K N 1989 J. Appl. Phys. 66 2619
[1] High-performing silicon-based germanium Schottky photodetector with ITO transparent electrode
Zhiwei Huang(黄志伟), Shaoying Ke(柯少颖), Jinrong Zhou(周锦荣), Yimo Zhao(赵一默), Wei Huang(黄巍), Songyan Chen(陈松岩), and Cheng Li(李成). Chin. Phys. B, 2021, 30(3): 037303.
[2] Polarization-independent silicon photonic grating coupler for large spatial light spots
Lijun Yang(杨丽君), Xiaoyan Hu(胡小燕), Bin Li(李斌), and Jing Cao(曹静). Chin. Phys. B, 2021, 30(2): 024206.
[3] A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure
Xiangxian Wang(王向贤), Jiankai Zhu(朱剑凯), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), Hua Yang(杨华), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024207.
[4] Ground state cooling of an optomechanical resonator with double quantum interference processes
Shuo Zhang(张硕), Tan Li(李坦), Qian-Hen Duan(段乾恒), Jian-Qi Zhang(张建奇), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2021, 30(2): 023701.
[5] Experimental investigation of electrode cycle performance and electrochemical kinetic performance under stress loading
Zi-Han Liu(刘子涵), Yi-Lan Kang(亢一澜), Hai-Bin Song(宋海滨), Qian Zhang(张茜), and Hai-Mei Xie(谢海妹). Chin. Phys. B, 2021, 30(1): 016201.
[6] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[7] Enhanced gated-diode-triggered silicon-controlled rectifier for robust electrostatic discharge (ESD) protection applications
Wenqiang Song(宋文强), Fei Hou(侯飞), Feibo Du(杜飞波), Zhiwei Liu(刘志伟), Juin J. Liou(刘俊杰). Chin. Phys. B, 2020, 29(9): 098502.
[8] Resonance-enhanced two-photon ionization of hydrogen atom in intense laser field investigated by Bohmian-mechanics
Yang Song(宋阳), Shu Han(韩姝), Yu-Jun Yang(杨玉军), Fu-Ming Guo(郭福明), Su-Yu Li(李苏宇). Chin. Phys. B, 2020, 29(9): 093204.
[9] Total dose test with γ-ray for silicon single photon avalanche diodes
Qiaoli Liu(刘巧莉), Haiyan Zhang(张海燕), Lingxiang Hao(郝凌翔), Anqi Hu(胡安琪), Guang Wu(吴光), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(8): 088501.
[10] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[11] Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator
Zhao Yan(闫昭), Hongyi Pan(潘弘毅), Junyang Wang(汪君洋), Rusong Chen(陈汝颂), Fei Luo(罗飞), Xiqian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2020, 29(8): 088201.
[12] Symmetry-broken silicon disk array as an efficient terahertz switch working with ultra-low optical pump power
Zhanghua Han(韩张华), Hui Jiang(姜辉), Zhiyong Tan(谭智勇), Juncheng Cao(曹俊诚), Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(8): 084209.
[13] Perspective for aggregation-induced delayed fluorescence mechanism: A QM/MM study
Jie Liu(刘杰), Jianzhong Fan(范建忠), Kai Zhang(张凯), Yuchen Zhang(张雨辰), Chuan-Kui Wang(王传奎), Lili Lin(蔺丽丽). Chin. Phys. B, 2020, 29(8): 088504.
[14] Low-power electro-optic phase modulator based on multilayer graphene/silicon nitride waveguide
Lanting Ji(姬兰婷), Wei Chen(陈威), Yang Gao(高阳), Yan Xu(许言), Chi Wu(吴锜), Xibin Wang(王希斌), Yunji Yi(衣云骥), Baohua Li(李宝华), Xiaoqiang Sun(孙小强), Daming Zhang(张大明). Chin. Phys. B, 2020, 29(8): 084207.
[15] Analysis of stress-induced inhomogeneous electroluminescence in GaN-based green LEDs grown on mesh-patterned Si (111) substrates with n-type AlGaN layer
Quan-Jiang Lv(吕全江), Yi-Hong Zhang(张一鸿), Chang-Da Zheng(郑畅达), Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Jun-Lin Liu(刘军林). Chin. Phys. B, 2020, 29(8): 087801.
No Suggested Reading articles found!