Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 010303    DOI: 10.1088/1674-1056/25/1/010303
GENERAL Prev   Next  

Entanglement and non-Markovianity of a multi-level atom decaying in a cavity

Zi-Long Fan(范子龙), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生)
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, China
Abstract  We present a paradigmatic method for exactly studying non-Markovian dynamics of a multi-level V-type atom interacting with a zero-temperature bosonic bath. Special attention is paid to the entanglement evolution and the dynamical non-Markovianity of a three-level V-type atom. We find that the entanglement negativity decays faster and non-Markovianity is smaller in the resonance regions than those in the non-resonance regions. More importantly, the quantum interference between the dynamical non-Markovianities induced by different transition channels is manifested, and the frequency domains for constructive and destructive interferences are found.
Keywords:  entanglement negativity      non-Markovianity      quantum interference  
Received:  23 July 2015      Revised:  16 September 2015      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11275064 and 11075050), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20124306110003), and the Construct Program of the National Key Discipline, China.
Corresponding Authors:  Hao-Sheng Zeng     E-mail:  hszeng@hunnu.edu.cn

Cite this article: 

Zi-Long Fan(范子龙), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生) Entanglement and non-Markovianity of a multi-level atom decaying in a cavity 2016 Chin. Phys. B 25 010303

[1] Breuer H P and Petruccione F 2007 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[2] Kubota Y and Nobusada K 2009 J. Phys. Soc. Jpn. 78 114603
[3] Ji Y H and Hu J J 2010 Chin. Phys. B 19 060304
[4] Shao J 2004 J. Chem. Phys. 120 5053
[5] Chin A W, Datta A, Caruso F, Huelga S F and Plenio M B 2010 New J. Phys. 12 065002
[6] Chin A W, Huelga S F and Plenio M B 2012 Phys. Rev. Lett. 109 233601
[7] Bylicka B, Chruściński D and Maniscalco S 2014 Sci. Rep. 4 5720
[8] Laine E M, Breuer H P and Piilo J 2014 Sci. Rep. 4 4620
[9] Vasile R, Olivares S, Paris M G A and Maniscalco S 2011 Phys. Rev. A 83 042321
[10] Tang N, Fan Z L and Zeng H S 2015 Quant. Inform. Comput. 15 0568
[11] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
[12] Rivas Á, Huelga S F and Plenio M B 2010 Phys. Rev. Lett. 105 050403
[13] Lu X M, Wang X G and Sun C P 2010 Phys. Rev. A 82 042103
[14] Luo S, Fu S and Song H 2012 Phys. Rev. A 86 044101
[15] Hou S C, Liang S L and Yi X X 2015 Phys. Rev. A 91 012109
[16] Zeng H S, Tang N, Zheng Y P and Wang G Y 2011 Phys. Rev. A 84 032118
[17] Xu Z Y, Yang W L and Feng M 2010 Phys. Rev. A 81 044105
[18] Chruściński D and Wudarski F A 2015 Phys. Rev. A 91 012104
[19] Gu W J and Li G X 2012 Phys. Rev. A 85 014101
[20] Yin X, Ma J, Wang X and Nori F 2012 Phys. Rev. A 86 012308
[21] Mäkelä H 2015 Phys. Rev. A 91 012108
[22] Deffner S and Lutz E 2013 Phys. Rev. Lett. 111 010402
[23] Shen H Z, Qin M and Yi X X 2013 Phys. Rev. A 88 033835
[24] Zou C L, Chen X D, Xiong X, Sun F W, Zou X B, Han Z F and Guo G C 2013 Phys. Rev. A 88 063806
[25] He Z, Zou J, Li L and Shao B 2011 Phys. Rev. A 83 012108
[26] Zeng H S, Zheng Y P, Tang N and Wang G Y 2013 Quantum Inf. Pro-cess 12 1637
[27] Xue S B, Wu R B, Zhang W M, Zhang J, Li C W and Tarn T J 2012 Phys. Rev. A 86 052304
[28] Tang N, Cheng W and Zeng H S 2014 Eur. Phys. J. D 68 278
[29] Zhang Y J, Yang X Q, Han W and Xia Y J 2013 Chin. Phys. B 22 090307
[30] Wang X Y, Ding B F and Zhao H P 2013 Chin. Phys. B 22 020309
[31] Wang X Y, Ding B F and Zhao H P 2013 Chin. Phys. B 22 040308
[32] Xue P and Zhang Y S 2013 Chin. Phys. B 22 070302
[33] Xie D and Wang A M 2014 Chin. Phys. B 23 040302
[34] Liu X and Wu W 2014 Chin. Phys. B 23 070303
[35] Fan Z L, Tian J and Zeng H S 2014 Chin. Phys. B 23 060303
[36] Wang G Y, Tang N, Liu Y and Zeng H S 2015 Chin. Phys. B 24 050302
[37] Liu Y, Cheng W, Gao Z Y and Zeng H S 2015 Opt. Express 23 23021
[38] Tian L J, Ti M M and Zhai X D 2015 Chin. Phys. B 24 100305
[39] Zou H M and Fang M F 2015 Chin. Phys. B 24 080304
[40] Liu B H, Li L, Huang Y F, Li C F, Guo G C, Laine E M, Breuer H P and Piilo J 2011 Nat. Phys. 7 931
[41] Tang J S, Li C F, Li Y L, Zou X B, Gou G C, Breuer H P, Laine E M and Piilo J 2012 Europhys. Lett. 97 10002
[42] Peres A 1996 Phys. Rev. Lett. 77 1413
[43] Horodečki P 1997 Phys. Lett. A 232 333
[44] Bruß D and Macchiavello C 2002 Phys. Rev. Lett. 88 127901
[45] Cerf N J, Bourennane M, Karlsson A and Gisin N 2002 Phys. Rev. Lett. 88 127902
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[3] Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses
Fengzheng Zhu(朱风筝), Xiaoyu Liu(刘晓煜), Yue Guo(郭月), Ningyue Wang(王宁月), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2021, 30(9): 094209.
[4] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[5] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[6] Generating Kerr nonlinearity with an engineered non-Markovian environment
Fei-Lei Xiong(熊飞雷), Wan-Li Yang(杨万里), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(4): 040302.
[7] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
[8] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[9] Dynamics of two levitated nanospheres nonlinearly coupling with non-Markovian environment
Xun Li(李逊), Biao Xiong(熊标), Shilei Chao(晁石磊), Jiasen Jin(金家森), Ling Zhou(周玲). Chin. Phys. B, 2019, 28(5): 050302.
[10] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[11] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[12] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[13] Non-Markovian speedup dynamics control of the damped Jaynes-Cummings model with detuning
Kai Xu(徐凯), Wei Han(韩伟), Ying-Jie Zhang(张英杰), Heng Fan(范桁). Chin. Phys. B, 2018, 27(1): 010302.
[14] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[15] Quantum interference between heralded single photon stateand coherent state
Lei Yang(杨磊), Xiaoxin Ma(马晓欣), Xiaoying Li(李小英). Chin. Phys. B, 2017, 26(7): 074206.
No Suggested Reading articles found!