Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 098902    DOI: 10.1088/1674-1056/24/9/098902
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Synchronization of Markovian jumping complex networks with event-triggered control

Shao Hao-Yu, Hu Ai-Hua, Liu Dan
School of Science, Jiangnan University, Wuxi 214122, China
Abstract  This paper investigates event-triggered synchronization for complex networks with Markovian jumping parameters. Nonlinear dynamics with Markovian jumping parameters is considered for each node in a complex network. By utilizing the proposed event-triggered strategy, and based on the Lyapunov functional method and linear matrix inequality technology, some sufficient conditions for synchronization of complex networks are derived whether the transition rate matrix for the Markov process is completely known or not. Finally, a numerical example is presented to illustrate the effectiveness of the proposed theoretical results.
Keywords:  complex networks      synchronization      event-triggered control      Markovian jumping parameters  
Received:  09 January 2015      Revised:  02 April 2015      Published:  05 September 2015
PACS:  89.75.Fb (Structures and organization in complex systems)  
  05.45.Xt (Synchronization; coupled oscillators)  
  02.30.Yy (Control theory)  
  02.50.Ga (Markov processes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11202084).
Corresponding Authors:  Hu Ai-Hua     E-mail:  aihuahu@126.com

Cite this article: 

Shao Hao-Yu, Hu Ai-Hua, Liu Dan Synchronization of Markovian jumping complex networks with event-triggered control 2015 Chin. Phys. B 24 098902

[1] Wang L M, Tang Y G, Chai Y Q and Wu F 2014 Chin. Phys. B 23 100501
[2] Cai G L, Jiang S Q, Cai S M and Tian L X 2014 Chin. Phys. B 23 120505
[3] Zhang J B, Ma Z J and Zhang G 2014 Chin. Phys. B 23 010507
[4] Wang J A, Nie R X and Sun Z Y 2014 Chin. Phys. B 23 050509
[5] Yao C G, Zhao Q and Yu J 2013 Phys. Lett. A 377 370
[6] Sang J Y, Yang J and Yue L J 2011 Chin. Phys. B 20 080507
[7] Hu A H and Xu Z Y 2011 Commun. Nonlinear Sci. Numer. Simul. 16 3237
[8] Grassi G 2012 Chin. Phys. B 21 050505
[9] Pourdehi S and Karimaghaee P 2012 Chaos 22 023145
[10] Wang S, Yu Y G and Wen G G 2014 Nonlinear Analysis: Hybrid systems 11 129
[11] Yu W W, Zheng W X, Chen G R, Ren W and Cao J D 2011 Automatica 47 1496
[12] Rakkiyappan R, Sakthivel N and Lakshmanan S 2014 Chin. Phys. B 23 020205
[13] Wang Y, Wu Q H and Wang Y Q 2012 Syst. Control Lett. 61 1145
[14] Yang S F, Cao J D and Lu J Q 2012 Chaos 22 043134
[15] Yang W, Wang X F and Shi H B 2013 Syst. Control Lett. 62 269
[16] Meng X Y and Chen T W 2013 Automatica 49 2125
[17] Chen X and Hao F 2012 IET. Control Theory Appl. 6 2493
[18] Trimpe S and D'Andrea R 2011 Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, December 12-15, 2011, p. 2361
[19] Guo G, Ding L and Han Q L 2014 Automatica 50 1489
[20] Zhang J H and Feng G 2014 Automatica 50 1852
[21] Qi B, Cui B T and Lou X Y 2014 Chin. Phys. B 23 110501
[22] Hu S and Yue D 2012 Signal Process 92 2029
[23] Luo R Z and He L M 2014 Chin. Phys. B 23 070506
[24] Liu K E, Xie G M, Ren W and Wang L 2013 Syst. Control Lett. 62 152
[25] Zhang H W and Lewis F L 2012 Automatica 48 1432
[26] Rakkiyappan R, Chandrasekar A, Rihan F A and Lakshmanan S 2014 Math. Biosci. 251 30
[27] Zhang H G and Wang Y C 2008 IEEE Trans. Neural Netw. 19 366
[28] Zhang H G, Dong M, Wang Y C and Sun N 2010 Neurocomputing 73 2689
[29] Zhang H G, Fu J, Ma T D and Tong S C 2009 Chin. Phys. B 18 3325
[30] Yao X, Wu L, Zheng W X and Wang C 2011 Int. J. Syst. Sci. 42 1219
[31] Zhang L and Boukas E 2009 Automatica 45 463
[32] Ma Q, Xu S and Zou Y 2011 Neurocomputing 74 3404
[33] Horn R A and Johnson C R 1985 Matrix Analysis (Cambridge: Cambridge University Press)
[34] Zhang X M and Han Q L 2013 Int. J. Robust Nonlinear 23 1419
[35] Li H J, Ming C, Shen S G and Wong W K 2014 J. Franklin I. 351 2582
[1] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
[2] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[3] Finite-time Mittag-Leffler synchronization of fractional-order delayed memristive neural networks with parameters uncertainty and discontinuous activation functions
Chong Chen(陈冲), Zhixia Ding(丁芝侠), Sai Li(李赛), Liheng Wang(王利恒). Chin. Phys. B, 2020, 29(4): 040202.
[4] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[5] Enhanced vibrational resonance in a single neuron with chemical autapse for signal detection
Zhiwei He(何志威), Chenggui Yao(姚成贵), Jianwei Shuai(帅建伟), and Tadashi Nakano. Chin. Phys. B, 2020, 29(12): 128702.
[6] Recent progress on excitation and manipulation of spin-waves in spin Hall nano-oscillators
Liyuan Li(李丽媛), Lina Chen(陈丽娜), Ronghua Liu(刘荣华), Youwei Du(都有为). Chin. Phys. B, 2020, 29(11): 117102.
[7] Modeling and analysis of the ocean dynamic with Gaussian complex network
Xin Sun(孙鑫), Yongbo Yu(于勇波), Yuting Yang(杨玉婷), Junyu Dong(董军宇), Christian Böhm(陈学恩), Xueen Chen. Chin. Phys. B, 2020, 29(10): 108901.
[8] Explosive synchronization of multi-layer frequency-weighted coupled complex systems
Yan-Liang Jin(金彦亮), Lin Yao(姚林), Wei-Si Guo(郭维思), Rui Wang(王瑞), Xue Wang(王雪), Xue-Tao Luo(罗雪涛). Chin. Phys. B, 2019, 28(7): 070502.
[9] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
[10] Cross-frequency network analysis of functional brain connectivity in temporal lobe epilepsy
Hai-Tao Yu(于海涛), Li-Hui Cai(蔡立辉), Xin-Yu Wu(武欣昱), Jiang Wang(王江), Jing Liu(刘静), Hong Zhang(张宏). Chin. Phys. B, 2019, 28(4): 048702.
[11] Energy feedback and synchronous dynamics of Hindmarsh-Rose neuron model with memristor
K Usha, P A Subha. Chin. Phys. B, 2019, 28(2): 020502.
[12] Relaxation dynamics of Kuramoto model with heterogeneous coupling
Tianwen Pan(潘天文), Xia Huang(黄霞), Can Xu(徐灿), Huaping Lü(吕华平). Chin. Phys. B, 2019, 28(12): 120503.
[13] Theoretical analyses of stock correlations affected by subprime crisis and total assets: Network properties and corresponding physical mechanisms
Shi-Zhao Zhu(朱世钊), Yu-Qing Wang(王玉青), Bing-Hong Wang(汪秉宏). Chin. Phys. B, 2019, 28(10): 108901.
[14] Double compound combination synchronization among eight n-dimensional chaotic systems
Gamal M Mahmoud, Tarek M Abed-Elhameed, Ahmed A Farghaly. Chin. Phys. B, 2018, 27(8): 080502.
[15] Stochastic resonance and synchronization behaviors of excitatory-inhibitory small-world network subjected to electromagnetic induction
Xiao-Han Zhang(张晓函), Shen-Quan Liu(刘深泉). Chin. Phys. B, 2018, 27(4): 040501.
No Suggested Reading articles found!