Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 094701    DOI: 10.1088/1674-1056/24/9/094701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Laser-driven flier impact experiments at the SG-III prototype laser facility

Shui Min, Chu Gen-Bai, Xin Jian-Ting, Wu Yu-Chi, Zhu Bin, He Wei-Hua, Xi Tao, Gu Yu-Qiu
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang 621900, China
Abstract  Laser-driven flier impact experiments have been designed and performed at the SG-III prototype laser facility. The continuum phase plate (CPP) technique is used for the 3 ns quadrate laser pulse to produce a relatively uniform irradiated spot of 2 mm. The peak laser intensity is 2.7× 1013 W/cm2 and it accelerates the aluminum flier with a density gradient configuration to a high average speed of 21.3 km/s, as determined by the flight-of-time method with line VISAR. The flier decelerates on impact with a transparent silica window, providing a measure of the flatness of the flier after one hundred microns of flight. The subsequent shock wave acceleration, pursuing, and decay in the silica window are interpreted by hydrodynamic simulation. This method provides a promising method to create unique conditions for the study of a material's properties.
Keywords:  laser-driven flier      VISAR      shock wave  
Received:  26 January 2015      Revised:  31 March 2015      Published:  05 September 2015
PACS:  47.40.Nm (Shock wave interactions and shock effects)  
  47.80.Cb (Velocity measurements)  
Corresponding Authors:  Gu Yu-Qiu     E-mail:  yqgu@caep.cn

Cite this article: 

Shui Min, Chu Gen-Bai, Xin Jian-Ting, Wu Yu-Chi, Zhu Bin, He Wei-Hua, Xi Tao, Gu Yu-Qiu Laser-driven flier impact experiments at the SG-III prototype laser facility 2015 Chin. Phys. B 24 094701

[1] Jones A H, Isbell W M and Maiden C J 1966 J. Appl. Phys. 37 3493
[2] Gupta Y M, Duvall G E and Fowles G R 1975 J. Appl. Phys. 46 532
[3] Cauble R, Phillion D W, Hoover T J, Holmes N C, Kilkenny J D and Lee R W 1993 Phys. Rev. Lett. 70 2102
[4] Kadonoa T, Yoshida, Takahashi E, Matsushima I, Owadano Y, Ozaki N, Fujita K, Nakano M, Tanaka K A, Takenaka H and Kondo K 2000 J. Appl. Phys. 88 2943
[5] Tanaka K A, Hara M, Ozaki N, Sasatani Y, and Anisimov S I, Kondo K, Nakanoa M and Nishihara K, Takenaka H, Yoshida M and Mima K 2000 Phys. Plasmas 7 676
[6] Ozaki N, Sasatani Y, Kishida K, Nakano M, Miyanaga M, Nagai K, Nishihara K, Norimatsu T, Tanaka K A, Fujimoto F, Wakabayashi K, Hattori S, Tange T, Kondo K, Yoshida M, Kozu N, Ishiguchi M and Takenaka H 2001 J. Appl. Phys. 89 2571
[7] Wang F, Peng X S, Liu S Y, Li Y S, Jiang X H and Ding Y K 2011 Acta Phys. Sin. 60 025202 (in Chinese)
[8] Fu S Z, Gu Y, Huang X G, Wu J, He J H, Ma M X, Luo P Q and Zhang Y H 2002 Phys. Plasmas 9 3201
[9] Okada K, Wakabayashi K, Takenaka H, Nagao H, Kondo K, Ono T, Takamatsu K, Ozika N, Nagai K, Nakai M, Tanaka K A and Yoshida M 2003 International Journal of Impact Engineering 29 497
[10] Ozaki N, Sasatani Y, Kishida K, Nakano M, Miyanaga M, Nagai K, Nishihara K, Norimatsu T, Tanaka KA, Fujimoto Y, Wakabayashi K, Hattori S, Tange T, Kondo K, Yoshida M, Kozu N, Ishiguchi M and Takenaka H 2001 J. Appl. Phys. 89 2571
[11] Kadono T, Yoshida M, Mitani N K, Matumura T, Takahashi E, Matsushima I, Owadano Y, Sasatani Y, Fujita K, Ozaki N, Takamatsu K, Nakano M, Tanaka K A, Takenaka H, Ito H and Kondo K 2001 Laser Part. Beam 19 623
[12] Fratanduono D E, Smith R F, Boehly T R, Eggert J H, Braun D G and Collins G W 2012 Rev. Sci. Instrum. 83 073504
[13] Celliers P M, Bradley D K, Collins G W, Hicks D G, Boehly T R and Armstrong W J 2004 Rev. Sci. Instrum. 75 4916
[14] Ramis R, Schmalz R and Meyer-Ter-Vehn J 1988 Comput. Phys. Commun. 49 475
[15] Celliers P M, Collins G W, Da Silva L B, Gold D M, Cauble R, Wallace R J, Foord M E and Hammel B A 2000 Phys. Rev. Lett. 84 5564
[16] Lyzenga G A and Ahrens T J 1983 J. Geophys. Res. 88 2431
[17] Hicks D G, Boehly T R, Eggert J H, Miller J E, Celliers P M and Collins G W 2006 Phys. Rev. Lett. 97 025502
[18] Hicks D G, Celliers P M, Collins G W, Eggert J H and Moon S J 2003 Phys. Rev. Lett. 91 035502
[19] Huang X G, Gu Y and Luo P Q 2001 Chin. J. Lasers 28 47 (in Chinese)
[1] Experimental investigation on the properties of liquid film breakup induced by shock waves
Xianzhao Song(宋先钊), Bin Li(李斌), Lifeng Xie(解立峰). Chin. Phys. B, 2020, 29(8): 086201.
[2] Studies of flow field characteristics during the impact of a gaseous jet on liquid-water column
Jian Wang(王健), Wen-Jun Ruan(阮文俊), Hao Wang(王浩), Li-Li Zhang(张莉莉). Chin. Phys. B, 2019, 28(6): 064704.
[3] Investigation of convergent Richtmyer-Meshkov instability at tin/xenon interface with pulsed magnetic driven imploding
Shaolong Zhang(张绍龙), Wei Liu(刘伟), Guilin Wang(王贵林), Zhengwei Zhang(章征伟), Qizhi Sun(孙奇志), Zhaohui Zhang(张朝辉), Jun Li(李军), Yuan Chi(池原), Nanchuan Zhang(张南川). Chin. Phys. B, 2019, 28(4): 044702.
[4] Study on shock wave-induced cavitation bubbles dissolution process
Huan Xu(许欢), Peng-Fei Fan(范鹏飞), Yong Ma(马勇), Xia-Sheng Guo(郭霞生), Ping Yang(杨平), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2017, 26(2): 024301.
[5] Lower order three-dimensional Burgers equation having non-Maxwellian ions in dusty plasmas
Apul N Dev. Chin. Phys. B, 2017, 26(2): 025203.
[6] Conditions for laser-induced plasma to effectively remove nano-particles on silicon surfaces
Jinghua Han(韩敬华), Li Luo(罗莉), Yubo Zhang(张玉波), Ruifeng Hu(胡锐峰), Guoying Feng(冯国英). Chin. Phys. B, 2016, 25(9): 095204.
[7] Influence of shockwave profile on ejecta from shocked Pb surface: Atomistic calculations
Guo-Wu Ren(任国武), Shi-Wen Zhang(张世文), Ren-Kai Hong(洪仁楷), Tie-Gang Tang(汤铁钢), Yong-Tao Chen(陈永涛). Chin. Phys. B, 2016, 25(8): 086202.
[8] Sound field prediction of ultrasonic lithotripsy in water with spheroidal beam equations
Zhang Lue, Wang Xiang-Da, Liu Xiao-Zhou, Gong Xiu-Fen. Chin. Phys. B, 2015, 24(1): 014301.
[9] Shadowgraph investigation of plasma shock wave evolution from Al target under 355-nm laser ablation
Liu Tian-Hang, Hao Zuo-Qiang, Gao Xun, Liu Ze-Hao, Lin Jing-Quan. Chin. Phys. B, 2014, 23(8): 085203.
[10] The internal propagation of fusion flame with the strong shock of a laser driven plasma block for advanced nuclear fuel ignition
B. Malekynia, S. S. Razavipour. Chin. Phys. B, 2013, 22(5): 055202.
[11] Effects of density profile and multi-species target on laser-heated thermal-pressure-driven shock wave acceleration
Wang Feng-Chao. Chin. Phys. B, 2013, 22(12): 124102.
[12] Effects of bi-kappa distributed electrons on dust-ion-acoustic shock waves in dusty superthermal plasmas
M. S. Alam, M. M. Masud, A. A. Mamun. Chin. Phys. B, 2013, 22(11): 115202.
[13] A fiber-array probe technique for measuring the viscosity of a substance under shock compression
Feng Li-Peng, Liu Fu-Sheng, Ma Xiao-Juan, Zhao Bei-Jing, Zhang Ning-Chao, Wang Wen-Peng, Hao Bin-Bin. Chin. Phys. B, 2013, 22(10): 108301.
[14] Fracture characteristics of bulk metallic glass under high speed impact
Sun Bao-Ru,Zhan Zai-Ji,Liang Bo,Zhang Rui-Jun,Wang Wen-Kui. Chin. Phys. B, 2012, 21(5): 056101.
[15] An improved two-dimensional unstructured CE/SE scheme for capturing shock waves
Fu Zheng,Liu Kai-Xin. Chin. Phys. B, 2012, 21(4): 040202.
No Suggested Reading articles found!