Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 094207    DOI: 10.1088/1674-1056/24/9/094207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Comparison of absorption–dispersion and optical bistability behaviors between open and closed four-level tripod atomic systems

R. Karimi, S. H. Asadpour, S. Batebi, H. Rahimpour Soleimani
Department of Physics, University of Guilan, Rasht, Iran
Abstract  In this paper we investigate the optical properties of an open four-level tripod atomic system driven by an elliptically polarized probe field and compare its properties with the corresponding closed system. Our results reveal that absorption, dispersion, group velocity, and optical bistability of the probe field can be manipulated by adjusting the phase difference between the two circularly polarized components of a single coherent field and cavity parameters, i.e., the atomic exit rate from cavity and atomic injection rates.
Keywords:  absorption      dispersion      optical bistability     
Received:  07 February 2015      Published:  05 September 2015
PACS:  42.50.-p (Quantum optics)  
  42.65.-k (Nonlinear optics)  
Corresponding Authors:  S. H. Asadpour     E-mail:  S.Hosein.Asadpour@gmail.com

Cite this article: 

R. Karimi, S. H. Asadpour, S. Batebi, H. Rahimpour Soleimani Comparison of absorption–dispersion and optical bistability behaviors between open and closed four-level tripod atomic systems 2015 Chin. Phys. B 24 094207

[1] Wu Y and Yang X 2005 Phys. Rev. A 71 053806
[2] Scully M O, Zhu S Y and Gavrielides A 1989 Phys. Rev. Lett. 62 2813
[3] Kang H and Zhu Y F 2003 Phys. Rev. Lett. 91 093601
[4] Wu Y and Deng L 2004 Phys. Rev. Lett. 93 143904
[5] Wu Y and Deng L 2004 Opt. Lett. 29 2064
[6] Joshi A, Yang W and Xiao M 2003 Phys. Rev. A 68 015806
[7] Asadpour S H and Eslami Majd A 2012 J. Lumin. 132 1477
[8] Osman K I and Joshi A 2012 Phys. Lett. A 376 2565
[9] Lu X Y, Li J H, liu J B and Luo J M 2006 J. Phys. B: At. Mol. Opt. Phys. 39 5161
[10] Wu J, Lu X Y and Zheng L L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 161003
[11] Hau L V, Harris S E, Z. Dutton and Behroozi C H 1999 Nature 397 594
[12] Wang L J, Kuzmich A and Dogariu A 2000 Nature 406 277
[13] Wang Z and Yu B 2014 Laser Phys. Lett. 11 035201
[14] Yang W X, Hou J M and Lee R K 2008 Phys. Rev. A 77 033838
[15] Goren C, Wilson-Gordon A D, Rosenbluh M and Friedmann H 2003 Phys. Rev. A 68 043818
[16] Agarwal G S, Dey T N and Menon S 2001 Phys. Rev. A 64 053809
[17] Han D A, Zeng Y G, Chen W C, Dong S G, Huang C Q, Zhu C Y and Liang P Y 2011 Commun. Theor. Phys. 55 671
[18] Fleischhaker R and Evers J 2009 Phys. Rev. A 80 063816
[19] Javanainen J 1992 Europhys. Lett. 17 407.
[20] Han D A, Guo H, Bai Y F, Sun H and Zeng Y G 2006 Commun. Theor. Phys. 46 731
[21] Joshi A, Yang W and Xiao M 2003 Phys. Rev. A 68 015806
[22] Sun H, Guo H, Bai Y, Han D and Xuzong Chen S F 2005 Phys. Lett. A 33 68
[23] Bortman-Arbiv D, Wilson-Grodon A D and Friedmann H 2001 Phys. Rev. A 63 043818
[24] Menon S and Agarwal G S 1998 Phys. Rev. A 57 4014
[25] Hou B P, Wang S J, Yu W L and Sun W L 2004 Phys. Rev. A 69 053805
[26] Xu W H, Wu J H and Gao J Y 2002 Phys. Rev. A 66 063812
[27] Xu W H and Zhang H F 2003 J. Opt. Soc. Am. B 20 2377
[28] Wang Z and Xu M 2009 Opt. Commun. 282 1574
[29] Wang Z, Chen A X, Bai Y, Yang W X and Lee R K 2012 Journal of the Optical Society of America B 29 2891
[30] Li J H, Lü X Y, Luo J M and Huang Q J 2006 Phys. Rev. A 74 035801
[31] Yuan J, Feng W, Li P, Zhang X, Zhang Y, Zheng H and Zhang Y 2012 Phys. Rev. A 86 063820
[32] Chen H, Zhang Y, Yao X, Wu Z, Zhang X, Zhang Y and Xiao M 2014 Scientific Reports 4 3619
[33] Zhang Y, Wang Z, Nie Z, Li C, Chen H, Lu K and Xiao M 2011 Phys. Rev. Lett. 106 093904
[34] Zhang Y, Khadka U, Anderson B and Xiao M 2009 Phys. Rev. Lett. 102 013601
[35] Rosenberger A T, Orozco L A and Kimble H J 1983 Phys. Rev. A 28 2529
[1] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[2] Optical absorption in asymmetrical Gaussian potential quantum dot under the application of an electric field
Xue-Chao Li(李学超), Chun-Bao Ye(叶纯宝), Juan Gao(高娟), Bing Wang(王兵). Chin. Phys. B, 2020, 29(8): 087302.
[3] Discontinuous transition between Zundel and Eigen for H5O2+
Endong Wang(王恩栋), Beien Zhu(朱倍恩), Yi Gao(高嶷). Chin. Phys. B, 2020, 29(8): 083101.
[4] Responsive mechanism and coordination mode effect of a bipyridine-based two-photon fluorescent probe for zinc ion
Han Zhang(张瀚), Zhe Shao(邵哲), Ke Zhao(赵珂). Chin. Phys. B, 2020, 29(8): 083304.
[5] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[6] Exciton optical absorption in asymmetric ZnO/ZnMgO double quantum wells with mixed phases
Zhi-Qiang Han(韩智强), Li-Ying Song(宋丽颖), Yu-Hai Zan(昝宇海), Shi-Liang Ban(班士良). Chin. Phys. B, 2020, 29(7): 077104.
[7] Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation
Wen-Xiang Xue(薛文祥), Wen-Yu Zhao(赵文宇), Hong-Lei Quan(全洪雷), Cui-Chen Zhao(赵粹臣), Yan Xing(邢燕), Hai-Feng Jiang(姜海峰), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(6): 064209.
[8] Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers
Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫). Chin. Phys. B, 2020, 29(6): 067701.
[9] Semi-integer harmonic generation from an argon atom by bichromatic counter-rotating circularly polarized laser field
Tong Qi(齐桐), Xiao-Xin Huo(霍晓鑫), Jun Zhang(张军), Xue-Shen Liu(刘学深). Chin. Phys. B, 2020, 29(5): 053201.
[10] Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system
Kalan Mal, Khairul Islam, Suman Mondal, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2020, 29(5): 054211.
[11] Investigation of active-region doping on InAs/GaSb long wave infrared detectors
Su-Ning Cui(崔素宁), Dong-Wei Jiang(蒋洞微), Ju Sun(孙矩), Qing-Xuan Jia(贾庆轩), Nong Li(李农), Xuan Zhang(张璇), Yong Li(李勇), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2020, 29(4): 048502.
[12] Overview of finite elements simulation of temperature profile to estimate properties of materials 3D-printed by laser powder-bed fusion
Habimana Jean Willy, Xinwei Li(李辛未), Yong Hao Tan, Zhe Chen(陈哲), Mehmet Cagirici, Ramadan Borayek, Tun Seng Herng, Chun Yee Aaron Ong, Chaojiang Li(李朝将), Jun Ding(丁军). Chin. Phys. B, 2020, 29(4): 048101.
[13] Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion
S A T Fonkoua, M S Ngounou, G R Deffo, F B Pelap, S B Yamgoue, A Fomethe. Chin. Phys. B, 2020, 29(3): 030501.
[14] Graphene's photonic and optoelectronic properties-A review
A J Wirth-Lima, P P Alves-Sousa, W Bezerra-Fraga. Chin. Phys. B, 2020, 29(3): 037801.
[15] A compact electro-absorption modulator based on graphene photonic crystal fiber
Guangwei Fu(付广伟), Ying Wang(王颖), Bilin Wang(王碧霖), Kaili Yang(杨凯丽), Xiaoyu Wang(王晓愚), Xinghu Fu(付兴虎), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2020, 29(3): 034209.
No Suggested Reading articles found!