Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 090505    DOI: 10.1088/1674-1056/24/9/090505
GENERAL Prev   Next  

Prescribed performance synchronization for fractional-order chaotic systems

Liu Henga b, Li Sheng-Ganga, Sun Ye-Guob, Wang Hong-Xingb
a College of Mathematics and Information Science, Shaanxi Normal Universtiy, Xi'an 710119, China;
b Department of Applied Mathematics, Huainan Normal University, Huainan 232038, China
Abstract  In this paper the synchronization for two different fractional-order chaotic systems, capable of guaranteeing synchronization error with prescribed performance, is investigated by means of the fractional-order control method. By prescribed performance synchronization we mean that the synchronization error converges to zero asymptotically, with convergence rate being no less than a certain prescribed function. A fractional-order synchronization controller and an adaptive fractional-order synchronization controller, which can guarantee the prescribed performance of the synchronization error, are proposed for fractional-order chaotic systems with and without disturbances, respectively. Finally, our simulation studies verify and clarify the proposed method.
Keywords:  fractional-order chaotic system      prescribed performance control      chaos synchronization     
Received:  10 February 2015      Published:  05 September 2015
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11401243 and 61403157), the Fundamental Research Funds for the Central Universities of China (Grant No. GK201504002), and the Natural Science Foundation for the Higher Education Institutions of Anhui Province of China (Grant No. KJ2015A256).
Corresponding Authors:  Li Sheng-Gang     E-mail:  shengganglinew@126.com

Cite this article: 

Liu Heng, Li Sheng-Gang, Sun Ye-Guo, Wang Hong-Xing Prescribed performance synchronization for fractional-order chaotic systems 2015 Chin. Phys. B 24 090505

[1] Podlubny I 1999 Fractional Differential Equations (Academic Press)
[2] Chen Y, Ahn H S and Podlubny I 2006 Signal Process. 86 2611
[3] Li Y, Chen Y and Podlubny I 2009 Automatica 45 1965
[4] Monje C A, Chen Y, Vinagre B M, Xue D and Feliu-Batlle V 2010 Fractional-Order Systems and Controls: Fundamentals and Applications (Springer)
[5] Chen L, Chai Y, Wu R and Yang J 2012 IEEE Trans. Circuits Syst. II 59 602
[6] Kamal S, Raman A and Bandyopadhyay B 2013 IEEE Trans. Autom. Control 58 1597
[7] Aguila-Camacho N, Duarte-Mermoud M A and Gallegos J A 2014 Commun. Nonlinear Sci. Numer. Simul. 19 2951
[8] Shen J and Lam J 2014 Automatica 50 547
[9] Srivastava M, Agrawal S, Vishal K and Das S 2014 Appl. Math. Model. 38 3361
[10] Asheghan M M, Delshad S S, Hamidi Beheshti M T and Tavazoei M S 2013 Appl. Math. Comput. 222 712
[11] Muthukumar P, Balasubramaniam P and Ratnavelu K 2014 Nonlinear Dyn. 77 1547
[12] Razminia A and Baleanu D 2013 Mechatronics 23 873
[13] Lu J G 2006 Phys. Lett. A 354 305
[14] Abdullah A 2013 Appl. Math. Comput. 219 10000
[15] Li R and Chen W 2014 Nonlinear Dyn. 76 785
[16] Agrawal S and Das S 2013 Nonlinear Dyn. 73 907
[17] Xu Y, Wang H, Li Y and Pei B 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 3735
[18] Pan L, Zhou W, Zhou L and Sun K 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 2628
[19] Odibat Z 2012 Nonlinear Analysis: Real World Applications 13 779
[20] Liu H, Li S G, Sun Y G and Wang H X 2015 Acta Phys. Sin. 64 070503 (in Chinese)
[21] Matouk A and Elsadany A 2014 Appl. Math. Lett. 29 30
[22] Stamova I 2014 Nonlinear Dyn. 77 1251
[23] Bechlioulis C P and Rovithakis G A 2008 IEEE Trans. Autom. Control 53 2090
[24] Bechlioulis C P and Rovithakis G A 2010 IEEE Trans. Autom. Control 55 1220
[25] Bechlioulis C P, Doulgeri Z and Rovithakis G A 2012 Automatica 48 360
[26] Bechlioulis C P and Rovithakis G A 2014 Automatica 50 1217
[27] Ilchmann A, Ryan E P and Trenn S 2005 Syst. Control Lett. 54 655
[28] Doulgeri Z, Karayiannidis Y and Zoidi O 2009 17th Mediterranean Conference on Control and Automation, p. 1313
[29] Kostarigka A K and Rovithakis G A 2011 IEEE Trans. Syst. Man Cybern. Part B-Cybern. 41 1483
[30] Kostarigka A K and Rovithakis G A 2012 IEEE Trans. Neural Netw. Learn. Syst. 23 138
[31] Karayiannidis Y and Doulgeri Z 2012 Robot. Auto. Syst. 60 214
[32] Na J 2013 Int. J. Adapt. Control Signal Process. 27 426
[33] Li Y and Tong S 2015 Inf. Sci. 292 125
[34] Wang M, Wang C and Liu X 2014 Inf. Sci. 279 874
[35] Huang Y, Na J, Wu X, Liu X and Guo Y 2015 ISA Trans. 54 145
[36] Han S I and Lee J M 2014 ISA Trans. 53 33
[37] Lazarević M P and Debeljković D L 2005 Asian Journal of Control 7 440
[38] Li C and Deng W 2007 Appl. Math. Comput. 187 777
[39] Aghababa M P 2012 Nonlinear Dyn. 69 247
[40] Louodop P, Kountchou M, Fotsin H and Samuel B 2014 Nonlinear Dyn. 78 597
[41] Aghababa M P 2012 J. Comput. Nonlinear Dyn. 7 021010
[42] Tong S, Sui S and Li Y IEEE Trans. Fuzzy Syst. in press
[43] Li Y, Tong S and Li T 2014 Fuzzy Sets and Systems 248 138
[44] Tong S, Sui S and Li Y 2014 IEEE Trans. Fuzzy Syst. 22 1365
[45] Boulkroune A and M'Saad M 2011 Expert Syst. Appl. 38 14744
[46] Lü J, Han F, Yu X and Chen G 2004 Automatica 40 1677
[47] Lü J, Chen G, Yu X and Leung H 2004 IEEE Trans. Circuits Syst. I 51 2476
[48] Lü J, Yu S, Leung H and Chen G 2006 IEEE Trans. Circuits Syst. I 53 149
[49] Liu H, Yu H and Xiang W 2012 Chin. Phys. B 21 120505
[1] Topological horseshoe analysis and field-programmable gate array implementation of a fractional-order four-wing chaotic attractor
En-Zeng Dong(董恩增), Zhen Wang(王震), Xiao Yu(于晓), Zeng-Qiang Chen(陈增强), Zeng-Hui Wang(王增会). Chin. Phys. B, 2018, 27(1): 010503.
[2] Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme
Alireza Khanzadeh, Mahdi Pourgholi. Chin. Phys. B, 2016, 25(8): 080501.
[3] Robust sliding mode control for fractional-order chaotic economical system with parameter uncertainty and external disturbance
Zhou Ke, Wang Zhi-Hui, Gao Li-Ke, Sun Yue, Ma Tie-Dong. Chin. Phys. B, 2015, 24(3): 030504.
[4] Chaotic synchronization in Bose–Einstein condensate of moving optical lattices via linear coupling
Zhang Zhi-Ying, Feng Xiu-Qin, Yao Zhi-Hai, Jia Hong-Yang. Chin. Phys. B, 2015, 24(11): 110503.
[5] Control of fractional chaotic and hyperchaotic systems based on a fractional order controller
Li Tian-Zeng, Wang Yu, Luo Mao-Kang. Chin. Phys. B, 2014, 23(8): 080501.
[6] Generalized projective synchronization of the fractional-order chaotic system using adaptive fuzzy sliding mode control
Wang Li-Ming, Tang Yong-Guang, Chai Yong-Quan, Wu Feng. Chin. Phys. B, 2014, 23(10): 100501.
[7] Finite-time sliding mode synchronization of chaotic systems
Ni Jun-Kang, Liu Chong-Xin, Liu Kai, Liu Ling. Chin. Phys. B, 2014, 23(10): 100504.
[8] Continuous-time chaotic systems:Arbitrary full-state hybrid projective synchronization via a scalar signal
Giuseppe Grassi. Chin. Phys. B, 2013, 22(8): 080505.
[9] Synchronization of uncertain fractional-order chaotic systems with disturbance based on fractional terminal sliding mode controller
Wang Dong-Feng, Zhang Jin-Ying, Wang Xiao-Yan. Chin. Phys. B, 2013, 22(4): 040507.
[10] Robust modified projective synchronization of fractional-order chaotic systems with parameters perturbation and external disturbance
Wang Dong-Feng, Zhang Jin-Ying, Wang Xiao-Yan. Chin. Phys. B, 2013, 22(10): 100504.
[11] Chaos synchronization of a chain network based on a sliding mode control
Liu Shuang, Chen Li-Qun. Chin. Phys. B, 2013, 22(10): 100506.
[12] A single adaptive controller with one variable for synchronization of fractional-order chaotic systems
Zhang Ruo-Xun, Yang Shi-Ping. Chin. Phys. B, 2012, 21(8): 080505.
[13] Arbitrary full-state hybrid projective synchronization for chaotic discrete-time systems via a scalar signal
Giuseppe Grassi. Chin. Phys. B, 2012, 21(6): 060504.
[14] Generalized synchronization between different chaotic maps via dead-beat control
Grassi G. Chin. Phys. B, 2012, 21(5): 050505.
[15] Design of an adaptive finite-time controller for synchronization of two identical/different non-autonomous chaotic flywheel governor systems
Mohammad Pourmahmood Aghababa. Chin. Phys. B, 2012, 21(3): 030502.
No Suggested Reading articles found!