Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 090202    DOI: 10.1088/1674-1056/24/9/090202
GENERAL Prev   Next  

Robust H control of uncertain systems with two additive time-varying delays

M. Syed Ali, R. Saravanakumar
Department of Mathematics, Thiruvalluvar University, Vellore 632115, Tamil Nadu, India
Abstract  This paper is concerned with the problem of delay-dependent robust H control for a class of uncertain systems with two additive time-varying delays. A new suitable Lyapunov-Krasovskii functional (LKF) with triple integral terms is constructed and a tighter upper bound of the derivative of the LKF is derived. By applying a convex optimization technique, new delay-dependent robust H stability criteria are derived in terms of linear matrix inequalities (LMI). Based on the stability criteria, a state feedback controller is designed such that the closed-loop system is asymptotically stable. Finally, numerical examples are given to illustrate the effectiveness of the proposed method. Comparison results show that our results are less conservative than the existing methods.
Keywords:  additive time-varying delays      Lyapunov method      H control      linear matrix inequality     
Received:  23 March 2015      Published:  05 September 2015
PACS:  02.30.Hq (Ordinary differential equations)  
  02.30.Ks (Delay and functional equations)  
  02.30.Yy (Control theory)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the Fund from the Department of Science and Technology of India (Grant No. SR/FTP/MS-039/2011).
Corresponding Authors:  M. Syed Ali     E-mail:  syedgru@gmail.com

Cite this article: 

M. Syed Ali, R. Saravanakumar Robust H control of uncertain systems with two additive time-varying delays 2015 Chin. Phys. B 24 090202

[1] Gu K, Kharitonov V L and Chen J 2003 Stability of Time Delay Systems (Boston: Birkhuser)
[2] Syed Ali M, Arik S and Saravanakmuar R 2015 Neurocomputing 158 167
[3] Zhang G, Hu J and Shen Y 2014 Neural Netw. 55 1
[4] Zhang G, Hu J and Shen Y 2015 Neurocomputing 154 86
[5] Syed Ali M and Balasubramaniam P 2010 Int. J. Comput. Math. 87 1363
[6] Syed Ali M 2014 Int. J. Mach. Learn. Cyber. 5 13
[7] Syed Ali M 2014 Chin. Phys. B 23 060702
[8] Syed Ali M and Saravanakumar R 2015 Chin. Phys. B 24 050201
[9] Xu S, Lam J and Yang C 2001 IEEE Trans. Automat. Control 46 1321
[10] Tian E, Yue D and Zhang Y 2011 J. Franklin Inst. 348 555
[11] Yan H, Zhang H and Meng M Q H 2010 Neurocomputing 73 1235
[12] Sun J, Liu G P, Chen J and Rees D 2010 Automatica 46 466
[13] Liu P L 2013 ISA Transactions 52 725
[14] Gao H, Chen T and Lam J 2008 Automatica 44 39
[15] Xiao N and Jia Y 2013 Neurocomputing 118 150
[16] Dey R, Ray G, Ghosh S and Rakshit A 2010 Appl. Math. Comput. 215 3740
[17] Liu P L 2014 ISA Transactions 53 258
[18] Shao H and Han Q L 2012 J. Franklin Inst. 349 2033
[19] Wu H X, Liao X F, Feng W, Guo S T and Zhang W 2009 Appl. Math. Model. 33 4345
[20] Ge X 2014 Appl. Math. Comput. 241 42
[21] Cheng J, Zhu H, Zhong S, Zhang Y and Zeng Y 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 210
[22] Syed Ali M and Saravanakumar R 2014 Chin. Phys. B 23 120201
[23] Syed Ali M and Saravanakumar R 2014 Appl. Math. Comput. 249 510
[24] Fujinami T, Saito Y, Morishita M, Koike Y and Tanida K 2001 Earthq. Eng. Struct. Dyn. 30 1639
[25] Moon Y S, Park P, Kwon W H and Lee Y S 2001 Int. J. Cont. 74 1447
[26] Parlakci M N A and Kucukdemiral I B 2011 Int. J. Robust Nonlinear Cont. 21 974
[27] Xie W 2011 Int. J. Cont. Autom. Syst. 6 263
[28] Boyd B, Ghoui L E, Feron E and Balakrishnan V 1994 Linear Matrix Inequalities in System and Control Theory (Philadephia: SIAM)
[29] Gahinet P, Nemirovski A, Laub A and Chilali M 1995 LMI Control Toolbox User's Guide (Natick: The Mathworks)
[30] Tian J and Zhong S 2012 Neurocomputing 77 114
[31] Tian E, Yue D and Zhang Y 2009 Fuzzy Sets and Systems 160 1708
[32] Chen B, Liu X and Lin C 2009 Fuzzy Sets and Systems 160 403
[33] Duan Q, Su H and Wu Z G 2012 Neurocomputing 97 16
[1] Robust H control for uncertain Markovian jump systems with mixed delays
R Saravanakumar, M Syed Ali. Chin. Phys. B, 2016, 25(7): 070201.
[2] Distributed H control of multi-agent systems with directed networks
Liu Wei, Liu Ai-Li, Zhou Shao-Lei. Chin. Phys. B, 2015, 24(9): 090208.
[3] Stability analysis of Markovian jumping stochastic Cohen–Grossberg neural networks with discrete and distributed time varying delays
M. Syed Ali. Chin. Phys. B, 2014, 23(6): 060702.
[4] Improved delay-dependent robust H control of an uncertain stochastic system with interval time-varying and distributed delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2014, 23(12): 120201.
[5] Cluster exponential synchronization of a class of complex networks with hybrid coupling and time-varying delay
Wang Jun-Yi, Zhang Hua-Guang, Wang Zhan-Shan, Liang Hong-Jing. Chin. Phys. B, 2013, 22(9): 090504.
[6] Leader–following consensus control for networked multi-teleoperator systems with interval time-varying communication delays
M. J. Park, S. M. Lee, J. W. Son, O. M. Kwon, E. J. Cha. Chin. Phys. B, 2013, 22(7): 070506.
[7] H synchronization of chaotic neural networks with time-varying delays
O. M. Kwon, M. J. Park, Ju H. Park, S. M. Lee, E. J. Cha. Chin. Phys. B, 2013, 22(11): 110504.
[8] Novel delay dependent stability analysis of Takagi–Sugeno fuzzy uncertain neural networks with time varying delays
M. Syed Ali. Chin. Phys. B, 2012, 21(7): 070207.
[9] Novel delay-distribution-dependent stability analysis for continuous-time recurrent neural networks with stochastic delay
Wang Shen-Quan, Feng Jian, Zhao Qing. Chin. Phys. B, 2012, 21(12): 120701.
[10] Robust H control for uncertain systems with heterogeneous time-varying delays via static output feedback
Wang Jun-Wei, Zeng Cai-Bin. Chin. Phys. B, 2012, 21(11): 110206.
[11] Leader–following consensus criteria for multi-agent systems with time-varying delays and switching interconnection topologies
M. J. Park, O. M. Kwon, Ju H. Park, S. M. Lee, E. J. Cha. Chin. Phys. B, 2012, 21(11): 110508.
[12] Novel stability criteria for fuzzy Hopfield neural networks based on an improved homogeneous matrix polynomials technique
Feng Yi-Fu, Zhang Qing-Ling, Feng De-Zhi. Chin. Phys. B, 2012, 21(10): 100701.
[13] Robust stability analysis of Takagi–Sugeno uncertain stochastic fuzzy recurrent neural networks with mixed time-varying delays
M. Syed Ali. Chin. Phys. B, 2011, 20(8): 080201.
[14] A novel mixed-synchronization phenomenon in coupled Chua's circuits via non-fragile linear control
Wang Jun-Wei, Ma Qing-Hua, Zeng Li. Chin. Phys. B, 2011, 20(8): 080506.
[15] The H synchronization of nonlinear Bloch systems via dynamic feedback control approach
D.H. Ji, J.H. Koo, S.C. Won, Ju H. Park. Chin. Phys. B, 2011, 20(7): 070502.
No Suggested Reading articles found!