Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 087305    DOI: 10.1088/1674-1056/24/8/087305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Hetero-epitaxy of Lg=0.13-μm metamorphic AlInAs/GaInAs HEMT on Si substrates by MOCVD for logic applications

Huang Jiea, Li Mingb, Zhao Qianc, Gu Wen-Wena, Lau Kei-Mayb
a College of Engineering and Technology, Southwest University, Chongqing 400715, China;
b Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, China;
c School of Physical Science and Technology, Southwest University, Chongqing 400715, China
Abstract  In this work, a hetero-epitaxial Al0.49In0.51As/Ga0.47In0.53As metamorphic high electron mobility transistor (mHEMT) grown by metal–organic chemical vapor deposition (MOCVD) on p-type silicon substrate has been successfully demonstrated. A novel AlGaAs/AlAs period multiple quantum well (MQW) composite buffer scheme is developed to effectively tune the leakage current from the buffer layer. The quantized room-temperature Hall mobility of the two-dimensional electron gas (2DEG) is larger than 7800 cm2/V·s, with an average sheet carrier density of 4.6×1012 cm-2. Two-stage electron beam (EB) lithography technology by a JBX-6300 e-beam lithography system is developed to realize a 0.13-μm mHEMT device on Si substrate. A maximum transconductance Gm of up to 854 mS/mm is achieved, and is comparable to that of mHEMT technology on GaAs substrate with the same dimension. The fT and fmax are 135 GHz and 120 GHz, respectively.
Keywords:  AlInAs/GaInAs      silicon      metamorphic high electron mobility transistor (mHEMT)      metal-organic chemical vapor deposition (MOCVD)      multiple quantum well (MQW)  
Received:  29 December 2014      Revised:  29 March 2015      Published:  05 August 2015
PACS:  73.61.Ey (III-V semiconductors)  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61401373), the Fundamental Research Funds for Central University, China (Grant Nos. XDJK2013B004 and 2362014XK13), and the Chongqing Natural Science Foundation, China (Grant No. cstc2014jcyjA40038).
Corresponding Authors:  Huang Jie, Li Ming     E-mail:  jiehuang@swu.edu.cn;eeliming@sina.com

Cite this article: 

Huang Jie, Li Ming, Zhao Qian, Gu Wen-Wen, Lau Kei-May Hetero-epitaxy of Lg=0.13-μm metamorphic AlInAs/GaInAs HEMT on Si substrates by MOCVD for logic applications 2015 Chin. Phys. B 24 087305

[1] Wang L D, Ding P, Su Y B, Chen J, Zhang B C and Jin Z 2014 Chin. Phys. B 23 038501
[2] Lau K M, Tang C W, Li H O and Zhong Z Y 2008 IEEE International Electron Devices Meeting, December 15–17, 2008, San Francisco, CA, USA, p. 1
[3] Hudaitt M K, Dewey G, Datta S, Fastenau J M, Kavalieros J, Liu W K, Lubyshev D, Pillarisetty R, Rachmady W, Racosavljevic M, Rakshit T and Chau R 2007 IEEE International Electron Devices Meeting, December 10–12, 2007, Washington, DC, USA, p. 625
[4] Kim D H, del Alamo J A, Lee J H and Seo K S 2005 IEEE International Electron Devices Meeting, December 5–7, 2005, Washington, DC, USA, p. 767
[5] Yang X H, Han Q, Ni H Q, Huang S S, Du Y, Peng H L, Xiong Y H, Niu Z C and Wu R H 2006 Chin. Phys. Lett. 23 3376
[6] Chau R, Datta S and Majumdar A 2005 IEEE Compound Semiconductor Integrated Circuit Symposium, October 30–November 2, 2005, California, USA, p. 17
[7] Chand N, Ren F, Macrander A T, van der Ziel J P, Sergent A M, Hull R, Chu S N G, Chen Y K and Lang D V 1990 J. Appl. Phys. 67 2343
[8] Li H O, Tang C W and Lau K M 2008 IEEE Electron Dev. Lett. 29 561
[9] Tang C W, Li J, Lau K M and Chen K J 2006 Proc. CS Mantech Conference, April 24–27, 2006, Vancouver, British Columbia, Canada, p. 243
[10] Li H O, Huang W, Tang C W, Deng X F and Lau K M 2011 Chin. Phys. B 20 068502
[11] Xu J B, Zhang H Y, Fu X J, Guo T Y and Huang J 2010 Chin. Phys. B 19 037302
[12] Lien Y C, Chang E Y, Chang H C, Chu L H, Huang G W, Lee H M, Lee C S, Chen S H, Shen P T and Chang C Y 2004 IEEE Electron Dev. Lett. 25 348
[13] Yoon H S, Lee J H, Shim J Y, Hong J Y, Kang D M, Chang W J, Kim H C and Cho K I 2007 IEEE 19th International Conference on Indium Phosphide & Related Materials, May 14–18, 2007, Matsue, Shimane Prefecture, Japan, p. 114
[14] Kim S and Adesida I 2006 IEEE Electron Dev. Lett. 27 873
[1] High-performing silicon-based germanium Schottky photodetector with ITO transparent electrode
Zhiwei Huang(黄志伟), Shaoying Ke(柯少颖), Jinrong Zhou(周锦荣), Yimo Zhao(赵一默), Wei Huang(黄巍), Songyan Chen(陈松岩), and Cheng Li(李成). Chin. Phys. B, 2021, 30(3): 037303.
[2] Polarization-independent silicon photonic grating coupler for large spatial light spots
Lijun Yang(杨丽君), Xiaoyan Hu(胡小燕), Bin Li(李斌), and Jing Cao(曹静). Chin. Phys. B, 2021, 30(2): 024206.
[3] A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure
Xiangxian Wang(王向贤), Jiankai Zhu(朱剑凯), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), Hua Yang(杨华), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024207.
[4] Experimental investigation of electrode cycle performance and electrochemical kinetic performance under stress loading
Zi-Han Liu(刘子涵), Yi-Lan Kang(亢一澜), Hai-Bin Song(宋海滨), Qian Zhang(张茜), and Hai-Mei Xie(谢海妹). Chin. Phys. B, 2021, 30(1): 016201.
[5] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[6] Enhanced gated-diode-triggered silicon-controlled rectifier for robust electrostatic discharge (ESD) protection applications
Wenqiang Song(宋文强), Fei Hou(侯飞), Feibo Du(杜飞波), Zhiwei Liu(刘志伟), Juin J. Liou(刘俊杰). Chin. Phys. B, 2020, 29(9): 098502.
[7] Symmetry-broken silicon disk array as an efficient terahertz switch working with ultra-low optical pump power
Zhanghua Han(韩张华), Hui Jiang(姜辉), Zhiyong Tan(谭智勇), Juncheng Cao(曹俊诚), Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(8): 084209.
[8] Total dose test with γ-ray for silicon single photon avalanche diodes
Qiaoli Liu(刘巧莉), Haiyan Zhang(张海燕), Lingxiang Hao(郝凌翔), Anqi Hu(胡安琪), Guang Wu(吴光), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(8): 088501.
[9] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[10] Low-power electro-optic phase modulator based on multilayer graphene/silicon nitride waveguide
Lanting Ji(姬兰婷), Wei Chen(陈威), Yang Gao(高阳), Yan Xu(许言), Chi Wu(吴锜), Xibin Wang(王希斌), Yunji Yi(衣云骥), Baohua Li(李宝华), Xiaoqiang Sun(孙小强), Daming Zhang(张大明). Chin. Phys. B, 2020, 29(8): 084207.
[11] Analysis of stress-induced inhomogeneous electroluminescence in GaN-based green LEDs grown on mesh-patterned Si (111) substrates with n-type AlGaN layer
Quan-Jiang Lv(吕全江), Yi-Hong Zhang(张一鸿), Chang-Da Zheng(郑畅达), Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Jun-Lin Liu(刘军林). Chin. Phys. B, 2020, 29(8): 087801.
[12] Silicon-based optoelectronic synaptic devices
Lei Yin(尹蕾), Xiaodong Pi(皮孝东), Deren Yang(杨德仁). Chin. Phys. B, 2020, 29(7): 070703.
[13] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
[14] Design of a novel high holding voltage LVTSCR with embedded clamping diode
Ling Zhu(朱玲), Hai-Lian Liang(梁海莲), Xiao-Feng Gu(顾晓峰), Jie Xu(许杰). Chin. Phys. B, 2020, 29(6): 068503.
[15] Molecular dynamics simulation of thermal conductivity of silicone rubber
Wenxue Xu(徐文雪), Yanyan Wu(吴雁艳), Yuan Zhu(祝渊), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2020, 29(4): 046601.
No Suggested Reading articles found!