Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 087201    DOI: 10.1088/1674-1056/24/8/087201
Special Issue: TOPICAL REVIEW — Silicene
TOPICAL REVIEW—Silicene Prev   Next  

Silicene spintronics–A concise review

Wang Yang-Yang (王洋洋)a c, Quhe Ru-Ge (屈贺如歌)a d e f, Yu Da-Peng (俞大鹏)a b, Lü Jin (吕劲)a b
a State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871, China;
b Collaborative Innovation Center of Quantum Matter, Beijing 100871, China;
c Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
d Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China;
e State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China;
f School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  

Spintronics involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. The fascinating spin-resolved properties of graphene motivate numerous researchers to study spintronics in graphene and other two-dimensional (2D) materials. Silicene, the silicon analog of graphene, is considered to be a promising material for spintronics. Here, we present a review of theoretical advances with regard to spin-dependent properties, including the electric field-and exchange field-tunable topological properties of silicene and the corresponding spintronic device simulations.

Keywords:  silicene      spintronics      spin-filter      spin field effect transistor      topological property  
Received:  24 March 2015      Revised:  31 May 2015      Accepted manuscript online: 
PACS:  72.25.-b (Spin polarized transport)  
  73.43.Qt (Magnetoresistance)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  82.20.Wt (Computational modeling; simulation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11274016 and 11474012) and the National Basic Research Program of China (Grant Nos. 2013CB932604 and 2012CB619304).

Corresponding Authors:  Lü Jin     E-mail:  jinglu@pku.edu.cn

Cite this article: 

Wang Yang-Yang (王洋洋), Quhe Ru-Ge (屈贺如歌), Yu Da-Peng (俞大鹏), Lü Jin (吕劲) Silicene spintronics–A concise review 2015 Chin. Phys. B 24 087201

[1] Du X, Skachko I, Barker A and Andrei E Y 2008 Nat. Nanotech. 3 491
[2] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A and Geim A K 2008 Phys. Rev. Lett. 100 016602
[3] Tombros N, Jozsa C, Popinciuc M, Jonkman H T and van Wees B J 2007 Nature 448 571
[4] Han W, Pi K, McCreary K M, Li Y, Wong J J I, Swartz A G and Kawakami R K 2010 Phys. Rev. Lett. 105 167202
[5] Yang T Y, Balakrishnan J, Volmer F, Avsar A, Jaiswal M, Samm J, Ali S R, Pachoud A, Zeng M, Popinciuc M, Güntherodt G, Beschoten B and Özyilmaz B 2011 Phys. Rev. Lett. 107 047206
[6] Pesin D and MacDonald A H 2012 Nat. Mater. 11 409
[7] Han W, Kawakami R K, Gmitra M and Fabian J 2014 Nat. Nanotech. 9 794
[8] Lin C C, Penumatcha A V, Gao Y, Diep V Q, Appenzeller J and Chen Z 2013 Nano Lett. 13 5177
[9] Wang W H, Pi K, Li Y, Chiang Y F, Wei P, Shi J and Kawakami R K 2008 Phys. Rev. B 77 020402
[10] Kim W Y and Kim K S 2008 Nat. Nanotech. 3 408
[11] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
[12] Ozaki T, Nishio K, Weng H and Kino H 2010 Phys. Rev. B 81 075422
[13] Lakshmi S, Roche S and Cuniberti G 2009 Phys. Rev. B 80 193404
[14] Kang J, Wu F and Li J 2011 Appl. Phys. Lett. 98 083109
[15] Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L and Wu K 2012 Nano Lett. 12 3507
[16] Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804
[17] Chen L, Li H, Feng B, Ding Z, Qiu J, Cheng P, Wu K and Meng S 2013 Phys. Rev. Lett. 110 085504
[18] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
[19] Chiappe D, Grazianetti C, Tallarida G, Fanciulli M and Molle A 2012 Adv. Mater. 24 5088
[20] Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
[21] Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A and Gao H J 2013 Nano Lett. 13 685
[22] Chiappe D, Scalise E, Cinquanta E, Grazianetti C, van den Broek B, Fanciulli M, Houssa M and Molle A 2013 Adv. Mater. 26 2096
[23] Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A and Akinwande D 2015 Nat. Nanotech. 10 227
[24] Appelbaum I, Huang B and Monsma D J 2007 Nature 447 295
[25] Huang B, Monsma D J and Appelbaum I 2007 Phys. Rev. Lett. 99 177209
[26] Huang B, Jang H J and Appelbaum I 2008 Appl. Phys. Lett. 93 162508
[27] Sanvito S 2011 Chem. Soc. Rev. 40 3336
[28] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[29] Yao Y, Ye F, Qi X L, Zhang S C and Fang Z 2007 Phys. Rev. B 75 041401
[30] Wang Y, Zheng J, Ni Z, Fei R, Liu Q, Quhe R, Xu C, Zhou J, Gao Z and Lu J 2012 Nano 07 1250037
[31] Ding Y and Wang Y 2013 Appl. Phys. Lett. 102 143115
[32] Yang X F, Liu Y S, Feng J F, Wang X F, Zhang C W and Chi F 2014 J. Appl. Phys. 116 124312
[33] Zhang D, Long M, Zhang X, Cao C, Xu H, Li M and Chan K 2014 Chem. Phys. Lett. 616–617 178
[34] Deng X, Zhang Z, Tang G, Fan Z, Zhu H and Yang C 2014 Sci. Rep. 4 4038
[35] Xu C, Luo G, Liu Q, Zheng J, Zhang Z, Nagase S, Gao Z and Lu J 2012 Nanoscale 4 3111
[36] Kang J, Wu F and Li J 2012 Appl. Phys. Lett. 100 233122
[37] Pan F, Quhe R, Ge Q, Zheng J, Ni Z, Wang Y, Gao Z, Wang L and Lu J 2014 Physica E 56 43
[38] Ezawa M 2012 Phys. Rev. Lett. 109 055502
[39] Tsai W F, Huang C Y, Chang T R, Lin H, Jeng H T and Bansil A 2013 Nat. Commun. 4 1500
[40] Tahir M and Schwingenschlögl U 2013 Sci. Rep. 3 1075
[41] Tahir M, Manchon A, Sabeeh K and Schwingenschlögl U 2013 Appl. Phys. Lett. 102 162412
[42] Zhang X L, Liu L F and Liu W M 2013 Sci. Rep. 3 2908
[43] Cao G, Zhang Y and Cao J 2015 Phys. Lett. A 379 1475
[44] Pan H, Li Z, Liu C C, Zhu G, Qiao Z and Yao Y 2014 Phys. Rev. Lett. 112 106802
[45] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[1] Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet
Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜). Chin. Phys. B, 2023, 32(2): 027505.
[2] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[3] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[4] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[5] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[6] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[7] Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟). Chin. Phys. B, 2022, 31(1): 017302.
[8] Tunable valley filter efficiency by spin-orbit coupling in silicene nanoconstrictions
Yi-Jian Shi(施一剑), Yuan-Chun Wang(王园春), and Peng-Jun Wang(汪鹏君). Chin. Phys. B, 2021, 30(5): 057201.
[9] Ultra-low Young's modulus and high super-exchange interactions in monolayer CrN: A promising candidate for flexible spintronic applications
Yang Song(宋洋), Yan-Fang Zhang(张艳芳), Jinbo Pan(潘金波), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(4): 047105.
[10] Goos-Hänchen-like shift related to spin and valley polarization in ferromagnetic silicene
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2021, 30(10): 107302.
[11] Synthesis of new silicene structure and its energy band properties
Wei-Qi Huang(黄伟其), Shi-Rong Liu(刘世荣), Hong-Yan Peng(彭鸿雁), Xin Li(李鑫), Zhong-Mei Huang(黄忠梅). Chin. Phys. B, 2020, 29(8): 084202.
[12] Exploring ferromagnetic half-metallic nature of Cs2NpBr6 via spin polarized density functional theory
Malak Azmat Ali, G Murtaza, A Laref. Chin. Phys. B, 2020, 29(6): 066102.
[13] Tunneling magnetoresistance in ferromagnet/organic-ferromagnet/metal junctions
Yan-Qi Li(李彦琪), Hong-Jun Kan(阚洪君), Yuan-Yuan Miao(苗圆圆), Lei Yang(杨磊), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), Gui-Chao Hu(胡贵超). Chin. Phys. B, 2020, 29(1): 017303.
[14] Spin transport in antiferromagnetic insulators
Zhiyong Qiu(邱志勇), Dazhi Hou(侯达之). Chin. Phys. B, 2019, 28(8): 088504.
[15] Generation of valley pump currents in silicene
John Tombe Jada Marcellino, Mei-Juan Wang(王美娟), Sa-Ke Wang(汪萨克). Chin. Phys. B, 2019, 28(1): 017204.
No Suggested Reading articles found!