Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 080503    DOI: 10.1088/1674-1056/24/8/080503
GENERAL Prev   Next  

Secure communication based on spatiotemporal chaos

Ren Hai-Peng, Bai Chao
Department of Information and Control Engineering, Xi'an University of Technology, Xi'an 710048, China
Abstract  

In this paper, we propose a novel approach to secure communication based on spatiotemporal chaos. At the transmitter end, the state variables of the coupled map lattice system are divided into two groups: one is used as the key to encrypt the plaintext in the N-shift encryption function, and the other is used to mix with the output of the N-shift function to further confuse the information to transmit. At the receiver end, the receiver lattices are driven by the received signal to synchronize with the transmitter lattices and an inverse procedure of the encoding is conducted to decode the information. Numerical simulation and experiment based on the TI TMS320C6713 Digital Signal Processor (DSP) show the feasibility and the validity of the proposed scheme.

Keywords:  secure communication      spatiotemporal chaos      synchronization      N-shift function  
Received:  27 November 2014      Revised:  23 February 2015      Published:  05 August 2015
PACS:  05.45.Vx (Communication using chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Jn (High-dimensional chaos)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61172070) and the Funds from the Science and Technology Innovation Team of Shaanxi Province, China (Grant No. 2013CKT-04).

Corresponding Authors:  Ren Hai-Peng     E-mail:  haipengren@gmail.com

Cite this article: 

Ren Hai-Peng, Bai Chao Secure communication based on spatiotemporal chaos 2015 Chin. Phys. B 24 080503

[1] Ren H P, Baptist M and Grebogi C 2014 Robustness of chaos to media with multipath propagation (Boca Raton: CRC Press) pp. 423–437
[2] Carroll T L, Pecora and Louis M 1991 IEEE Trans. Circuits Syst. II 38 453
[3] Ren H P and Li W C 2010 Commun. Nonlinear Sci. Numer. Simul. 15 3058
[4] Wang X Y, Zhang N, Ren X L and Zhang Y L 2011 Chin. Phys. B 20 020507
[5] Wang X Y and Wang Q 2014 Chin. Phys. B 23 030503
[6] Ren H P, Baptist M and Grebogi C 2012 Int. J. Bifur. Chaos 22 1250199
[7] Hayes S, Grebogi C, Ott E and Mark A 1994 Phys. Rev. Lett. 73 1781
[8] Oppenheim A V, Wornell G W, Isabelle S H and Cuomo K M 1992 Proc. IEEE ICASSP, March 23–26, 1992, San Franciso, USA, p. 117
[9] Ponomarenko V I and Prokhorov M D 2002 Phys. Rev. E 66 026215.
[10] Yang T, Yang L B and Yang C M 1998 Phys. Lett. A 245 495
[11] Halle K S, Wu C W, Itoh M and Chua L O 1993 Int. J. Bifur. Chaos 3 469
[12] Andrew T P and Kevin M S 2001 IEEE Trans. CAS I 48 624
[13] Kevin M S 1994 Int. J. Bifur. Chaos 4 959
[14] Dedieu H, Kennedy M P and Hasler M 1993 IEEE Trans. CAS II 40 634
[15] Chin Y C, Dao L X and Steven R B 2004 Chaos, Solitons and Fractals 21 1129
[16] Yang T, Yang L B and Yang C M 1998 Phys. Lett. A 247 105
[17] Yang T, Yang L B and Yang C M 1998 IEEE Trans. CAS I 45 1062
[18] Ren H P, Han C Z and Liu D 2008 Chin. Phys. B 17 1202
[19] Gianluc M, Riccardo R and Gianluc S 2001 IEEE Trans. CAS I 48 1445
[20] Ren H P, Kong Q J and Bai C 2015 Proc. IEEE IWS, March 30–April 1, 2015, Shenzhen, China, p. 82
[21] Argyris A, Syvridis D, Larger L, Annovazzi L V, Colet P, Fischer I, Garcia O J, Mirasso C R, Pesquera L and Shore K A 2005 Nature 438 343
[22] Ren H P, Baptist M and Grebogi C 2013 Phys. Rev. Lett. 110 184101
[23] Zhou J, Jiang H, Hisakazu K and Shao G F 2014 Acta Phys. Sin. 63 140506 (in Chinese)
[24] Huang J W, Li G M, Feng J C and Jin J X 2014 Acta Phys. Sin. 14 140502 (in Chinese)
[25] Wang X Y and Luan D P 2013 Chin. Phys. B 22 110503
[1] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
[2] Finite-time Mittag-Leffler synchronization of fractional-order delayed memristive neural networks with parameters uncertainty and discontinuous activation functions
Chong Chen(陈冲), Zhixia Ding(丁芝侠), Sai Li(李赛), Liheng Wang(王利恒). Chin. Phys. B, 2020, 29(4): 040202.
[3] Enhanced vibrational resonance in a single neuron with chemical autapse for signal detection
Zhiwei He(何志威), Chenggui Yao(姚成贵), Jianwei Shuai(帅建伟), and Tadashi Nakano. Chin. Phys. B, 2020, 29(12): 128702.
[4] Recent progress on excitation and manipulation of spin-waves in spin Hall nano-oscillators
Liyuan Li(李丽媛), Lina Chen(陈丽娜), Ronghua Liu(刘荣华), Youwei Du(都有为). Chin. Phys. B, 2020, 29(11): 117102.
[5] Explosive synchronization of multi-layer frequency-weighted coupled complex systems
Yan-Liang Jin(金彦亮), Lin Yao(姚林), Wei-Si Guo(郭维思), Rui Wang(王瑞), Xue Wang(王雪), Xue-Tao Luo(罗雪涛). Chin. Phys. B, 2019, 28(7): 070502.
[6] Cross-frequency network analysis of functional brain connectivity in temporal lobe epilepsy
Hai-Tao Yu(于海涛), Li-Hui Cai(蔡立辉), Xin-Yu Wu(武欣昱), Jiang Wang(王江), Jing Liu(刘静), Hong Zhang(张宏). Chin. Phys. B, 2019, 28(4): 048702.
[7] Energy feedback and synchronous dynamics of Hindmarsh-Rose neuron model with memristor
K Usha, P A Subha. Chin. Phys. B, 2019, 28(2): 020502.
[8] Relaxation dynamics of Kuramoto model with heterogeneous coupling
Tianwen Pan(潘天文), Xia Huang(黄霞), Can Xu(徐灿), Huaping Lü(吕华平). Chin. Phys. B, 2019, 28(12): 120503.
[9] Double compound combination synchronization among eight n-dimensional chaotic systems
Gamal M Mahmoud, Tarek M Abed-Elhameed, Ahmed A Farghaly. Chin. Phys. B, 2018, 27(8): 080502.
[10] A new four-dimensional chaotic system with first Lyapunov exponent of about 22, hyperbolic curve and circular paraboloid types of equilibria and its switching synchronization by an adaptive global integral sliding mode control
Jay Prakash Singh, Binoy Krishna Roy, Zhouchao Wei(魏周超). Chin. Phys. B, 2018, 27(4): 040503.
[11] Stochastic resonance and synchronization behaviors of excitatory-inhibitory small-world network subjected to electromagnetic induction
Xiao-Han Zhang(张晓函), Shen-Quan Liu(刘深泉). Chin. Phys. B, 2018, 27(4): 040501.
[12] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[13] A novel pseudo-random coupled LP spatiotemporal chaos and its application in image encryption
Xingyuan Wang(王兴元), Yu Wang(王宇), Siwei Wang(王思伟), Yingqian Zhang(张盈谦), Xiangjun Wu(武相军). Chin. Phys. B, 2018, 27(11): 110502.
[14] Synchronization performance in time-delayed random networks induced by diversity in system parameter
Yu Qian(钱郁), Hongyan Gao(高红艳), Chenggui Yao(姚成贵), Xiaohua Cui(崔晓华), Jun Ma(马军). Chin. Phys. B, 2018, 27(10): 108902.
[15] A new four-dimensional hyperjerk system with stable equilibrium point, circuit implementation, and its synchronization by using an adaptive integrator backstepping control
J P Singh, V T Pham, T Hayat, S Jafari, F E Alsaadi, B K Roy. Chin. Phys. B, 2018, 27(10): 100501.
No Suggested Reading articles found!