Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 070203    DOI: 10.1088/1674-1056/24/7/070203
GENERAL Prev   Next  

An efficient locally one-dimensional finite-difference time-domain method based on the conformal scheme

Wei Xiao-Kun (魏晓琨)a, Shao Wei (邵维)a, Shi Sheng-Bing (石胜兵)a, Zhang Yong (张勇)b, Wang Bing-Zhong (王秉中)a
a School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China;
b School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  An efficient conformal locally one-dimensional finite-difference time-domain (LOD-CFDTD) method is presented for solving two-dimensional (2D) electromagnetic (EM) scattering problems. The formulation for the 2D transverse-electric (TE) case is presented and its stability property and numerical dispersion relationship are theoretically investigated. It is shown that the introduction of irregular grids will not damage the numerical stability. Instead of the staircasing approximation, the conformal scheme is only employed to model the curve boundaries, whereas the standard Yee grids are used for the remaining regions. As the irregular grids account for a very small percentage of the total space grids, the conformal scheme has little effect on the numerical dispersion. Moreover, the proposed method, which requires fewer arithmetic operations than the alternating-direction-implicit (ADI) CFDTD method, leads to a further reduction of the CPU time. With the total-field/scattered-field (TF/SF) boundary and the perfectly matched layer (PML), the radar cross section (RCS) of two 2D structures is calculated. The numerical examples verify the accuracy and efficiency of the proposed method.
Keywords:  conformal scheme      locally one-dimensional (LOD) finite-difference time-domain (FDTD) method      numerical dispersion      unconditional stability  
Received:  27 October 2014      Revised:  23 February 2015      Accepted manuscript online: 
PACS:  02.70.Bf (Finite-difference methods)  
  02.60.Cb (Numerical simulation; solution of equations)  
  43.20.Px (Transient radiation and scattering)  
  92.60.Ta (Electromagnetic wave propagation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61331007 and 61471105).
Corresponding Authors:  Wei Xiao-Kun     E-mail:  weixiaokun1990@163.com

Cite this article: 

Wei Xiao-Kun (魏晓琨), Shao Wei (邵维), Shi Sheng-Bing (石胜兵), Zhang Yong (张勇), Wang Bing-Zhong (王秉中) An efficient locally one-dimensional finite-difference time-domain method based on the conformal scheme 2015 Chin. Phys. B 24 070203

[1] Taflove A and Hagness S C 2005 Computational Electrodynamics: The Finite-Difference Time-Domain Method (Boston: Artech House)
[2] Lu W F, Li C, Huang S H, Lin G Y, Wang C, Yan G M, Huang W, Lai H K and Chen S Y 2013 Chin. Phys. B 22 107703
[3] Zhang H Y, Shen D L, Zhang Y P, Yang W J, Yuan C, Liu M, Yin Y H and Wu Z X 2014 Chin. Phys. B 23 097301
[4] Lin H, Xu D, Pantoja M F, Garcia S G and Yang H L 2014 Chin. Phys. B 23 094203
[5] Yan B, Yang X X, Fang J Y, Huang Y D, Qin H and Qin S Q 2015 Chin. Phys. B 24 015203
[6] Chen W B, Gong X Y, Deng X J, Feng J and Huang G Y 2014 Acta Phys. Sin. 63 194101 (in Chinese)
[7] Dai Y, Liu S B, Wang S Y, Kong X K and Chen C 2014 Chin. Phys. B 23 065202
[8] Jin L, Zhu Q Y, Fu Y Q and Yu W X 2013 Chin. Phys. B 22 104101
[9] Zhao H, Shen Y F and Zhang Z J 2014 Acta Phys. Sin. 63 174204 (in Chinese)
[10] Xiao X, Xu L and Li Q W 2013 Chin. Phys. B 22 094101
[11] Li J, Guo L X, Zeng H and Han X B 2009 Chin. Phys. B 18 2757
[12] Liu J X, Zhang J L and Su M M 2014 Acta Phys. Sin. 63 137501 (in Chinese)
[13] Namiki T 1999 IEEE Trans. Microw. Theory Tech. 58 2003
[14] Liu S B and Liu S Q 2004 Chin. Phys. B 13 1892
[15] Shibayama J, Muraki M, Yamaucyhi J and Nakano H 2005 Electron. Lett. 41 1046
[16] Wang S M and Chen J 2005 IEEE Trans. Microw. Theory Tech. 53 1913
[17] Ahmed I, Chua E K, Li Er P and Chen Z Z 2008 IEEE Trans. Anten. Propag. 56 3596
[18] Zheng F H and Chen Z Z 2001 IEEE Trans. Microw. Theory Tech. 49 1006
[19] Ahmed I, Chua E K and Li Er P 2010 IEEE Trans. Anten. Propag. 58 3983
[20] Zheng H X and Leung K W 2005 IEEE Trans. Microw. Theory Tech. 53 2295
[21] Liu Q F, Yin W Y, Chen Z Z and Liu P G 2010 IEEE Trans. Anten. Propag. 58 2384
[22] Liang F, Wang G, Lin L and Wang B Z 2011 IET Microw. Anten. Propag. 5 1256
[23] Zheng H X and Leung K W 2009 IEEE Trans. Anten. Propag. 57 3891
[24] Chai M, Xiao T and Liu Q H 2006 IEEE Trans. Electromag. Compat. 48 273
[25] Dai J, Chen Z Z, Su D L and Zhao X Y 2011 IEEE Trans. Anten. Propag. 59 2248
[26] Rana Md M and Mohan A S 2013 IEEE Trans. Electromag. Compat. 55 764
[27] Valtemir E do N V, Ben-Hur B and Fenando L T 2006 IEEE Microw. Wireless Compon. Lett. 16 398
[28] Ahmed I, Khoo E H and Li Er P 2010 IEEE Trans. Anten. Propag. 58 832
[29] Singh G, Tan E L and Chen Z Z 2009 Conf. in Microw. Singapore 1505
[30] Yi Y, Chen B, Chen H L and Fang D G 2007 IEEE Microw. Wireless Compon. Lett. 17 91
[31] Rana Md M and Mohan A S 2011 Conf. in Appl. Electromagnetic Kolkata 1
[32] Liu Q F, Chen Z Z and Yin W Y 2009 IEEE Trans. Anten. Propag. 57 2409
[33] Yang S C, Chen Z Z, Yu Y Q and Yin W Y 2012 IEEE Trans. Anten. Propag. 60 1995
[34] Dey S and Mittra R 1997 IEEE Microw. Guid Wave Lett. 7 273
[35] Li Er P, Ahmed I and Vahldieck R 2007 IEEE Microw. Wireless Compon. Lett. 17 319
[1] A spherical higher-order finite-difference time-domain algorithm with perfectly matched layer
Liu Ya-Wen (刘亚文), Chen Yi-Wang (陈亦望), Zhang Pin (张品), Liu Zong-Xin (刘宗信). Chin. Phys. B, 2014, 23(12): 124102.
No Suggested Reading articles found!