Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 040305    DOI: 10.1088/1674-1056/24/4/040305
GENERAL Prev   Next  

High-dimensional quantum state transfer in a noisy network environment

Qin Weia b c d, Li Jun-Linb c d, Long Gui-Lub c d
a School of Physics, Beijing Institute of Technology, Beijing 100081, China;
b State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China;
c Collaborative Innovation Center of Quantum Matter, Beijing 100084, China;
d Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China

We propose and analyze an efficient high-dimensional quantum state transfer protocol in an XX coupling spin network with a hypercube structure or chain structure. Under free spin wave approximation, unitary evolution results in a perfect high-dimensional quantum swap operation requiring neither external manipulation nor weak coupling. Evolution time is independent of either distance between registers or dimensions of sent states, which can improve the computational efficiency. In the low temperature regime and thermodynamic limit, the decoherence caused by a noisy environment is studied with a model of an antiferromagnetic spin bath coupled to quantum channels via an Ising-type interaction. It is found that while the decoherence reduces the fidelity of state transfer, increasing intra-channel coupling can strongly suppress such an effect. These observations demonstrate the robustness of the proposed scheme.

Keywords:  quantum state transfer      quantum spin      hypercubes      spin wave  
Received:  12 January 2015      Revised:  19 January 2015      Published:  05 April 2015
PACS:  03.67.Hk (Quantum communication)  
  75.10.Pq (Spin chain models)  
  03.65.Ud (Entanglement and quantum nonlocality)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11175094 and 91221205) and the National Basic Research Program of China (Grant No. 2011CB9216002). Long Gui-Lu also thanks the support of Center of Atomic and Molecular Nanoscience of Tsinghua University, China.

Corresponding Authors:  Long Gui-Lu     E-mail:

Cite this article: 

Qin Wei, Li Jun-Lin, Long Gui-Lu High-dimensional quantum state transfer in a noisy network environment 2015 Chin. Phys. B 24 040305

[1] Sillanpää M A, Park J I and Simmonds R W 2007 Nature 449 438
[2] Schmidt-Kaler F, Häffner H, Riebe M, Gulde S, Lancaster G P T, Deuschle T, Becher C, Roos C F, Eschner J and Blatt R 2003 Nature 422 408
[3] Blinov B B, Moehring D L, Duan L M and Monroe C 2004 Nature 428 153
[4] Dong H, Xu D Z, Huang J F and Sun C P 2012 Light Sci. Appl. 1 e2
[5] Heilmann R, Gräfe M, Nolte S and Szameit A 2015 Sci. Bull. 60 96
[6] Bose S 2003 Phys. Rev. Lett. 91 207901
[7] Cubitt T S and Cirac J I 2008 Phys. Rev. Lett. 100 180406
[8] Godsil C, Kirkland S, Severini S and Smith J 2012 Phys. Rev. Lett. 109 050502
[9] Yao N Y, Laumann C R, Gorshkov A V, Weimer H, Jiang L, Cirac J I, Zoller P and Lukin M D 2013 Nat. Commun. 4 1585
[10] Ping Y, Lovett B W, Benjamin S C and Gauger E M 2013 Phys. Rev. Lett. 110 100503
[11] Wu N, Nanduri A and Rabitz H 2014 Phys. Rev. A 89 062105
[12] Korzekwa K, Machnikowski P and Horodecki P 2014 Phys. Rev. A 89 062301
[13] Xiang J D, Qin L G and Tian L J 2014 Chin. Phys. B 23 110305
[14] Zhang A P and Li F L 2013 Chin. Phys. B 22 030308
[15] Wang T J, Lu Y and Long G L 2012 Phys Rev A 86 042337
[16] Hong C H, Heo J, Lim J I and Yang H J 2014 Chin. Phys. B 23 090309
[17] Christandl M, Datta N, Ekert A and Landahl A J 2004 Phys. Rev. Lett. 92 187902
[18] Zhang J, Long G L, Zhang W, Deng Z, Liu W and Lu Z 2005 Phys. Rev. A 72 012331
[19] Vinet L and Zhedanov A 2012 Phys. Rev. A 85 012323
[20] Ajoy A and Cappellaro P 2013 Phys. Rev. Lett. 110 220503
[21] Wójcik A, Łuczak T, Kurzyński P, Grudka A, Gdala T and Bednarska M 2005 Phys. Rev. A 72 034303
[22] Banchi L, Apollparo T J G, Cuccoli A, Vaia R and Verrucchi P 2010 Phys. Rev. A 82 052321
[23] Apollparo T J G, Banchi L, Cuccoli A, Vaia R and Verrucchi P 2012 Phys. Rev. A 85 052319
[24] Yao N Y, Jiang L, Gorshkov A V, Gong Z X, Zhai A, Duan L M and Lukin M D 2011 Phys. Rev. Lett. 106 040505
[25] Shi T, Li Y, Song Z and Sun C P 2005 Phys. Rev. A 71 032309
[26] Fitzsimons J and Twamley J 2006 Phys. Rev. Lett. 97 090502
[27] Cappellaro P, Ramanathan C and Cory D G 2007 Phys. Rev. Lett. 99 250506
[28] Giorgi G L and Busch T 2013 Phys. Rev. A 88 062309
[29] Bechmann-Pasquinucci H and Tittel W 2000 Phys. Rev. A 61 062308
[30] Karimipour V, Bahraminasab A and Bagherinezhad S 2002 Phys. Rev. A 65 052331
[31] Mafu M, Dudley A, Goyal S, Giovannini D, McLaren M, Padgett M J, Konrad T, Petruccione F, Lütkenhaus N and Forbes A 2013 Phys. Rev. A. 88 032305
[32] Molina-Terriza G, Vaziri A, Ursin R and Zeilinger A 2005 Phys. Rev. Lett. 94 040501
[33] Goyal S K, Boukama-Dzoussi P E, Ghosh S, Roux F S and Konrad T 2014 Sci. Rep. 4 4543
[34] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
[35] Jiang M, Huang X, Zhou L L, Zhou Y M and Zeng J 2012 Chin. Sci. Bull. 57 2247
[36] Zou X F and Qiu D W 2014 Sci. China-Phys. Mech. Astron. 57 1696
[37] Zheng C and Long G F 2014 Sci. China-Phys. Mech. Astron. 57 1238
[38] Wang W Y, Wang C, Zhang G Y and Long G L 2009 Chin. Sci. Bull. 54 158
[39] Deng F G, Zhou H Y and Long G L 2006 J. Phys. A: Math Gen. 39 14089
[40] Lu Y, Feng G R, Li Y S and Long G L 2015 Sci. Bull. 60 241
[41] Zhang C, Li C F and Guo G C 2015 Sci. Bull. 60 249
[42] Gottesman D 1999 Chaos, Solitons and Fractals 10 1749
[43] Cafaro C, Maiolini F and Mancini S 2012 Phys. Rev. A 86 022308
[44] Nielsen M A, Bremner M J, Dodd J L, Childs A M and Dawson C M 2002 Phys. Rev. A 66 022317
[45] Klimov A B, Guzmán R, Retamal J C and Saavedra C 2003 Phys. Rev. A 67 062313
[46] Hugh D M and Twamley J 2005 New J. Phys. 7 174
[47] Bullock S S, O, Leary D P and Brennen G K 2005 Phys. Rev. Lett. 94 230502
[48] Bishop C A and Byrd M S 2008 Phys. Rev. A 77 012314
[49] Paz-Silva G A, Rebić S, Twamley J and Duty T 2009 Phys. Rev. Lett. 102 020503
[50] Strauch F W 2011 Phys. Rev. A 84 052313
[51] Rousseaux B, Guérin S and Vitanov N V 2013 Phys. Rev. A 87 032328
[52] Cao Y, Peng S G, Zheng C and Long G L 2011 Commun. Theor. Phys. 55 790
[53] Luo M X and Wang X J 2014 Sci. China-Phys. Mech. Astron. 57 1712
[54] Bayat A and Karimipour V 2007 Phys. Rev. A 75 022321
[55] Bayat A 2014 Phys. Rev. A 89 062302
[56] Romero-Isart O, Eckert K and Sanpera A 2007 Phys. Rev. A 75 050303
[57] Qin W, Wang C and Long G L 2013 Phys. Rev. A 87 012339
[58] Hayes J P and Mudge T 1989 Proc. IEEE 77 1829
[59] Feder D L 2006 Phys. Rev. Lett. 97 180502
[60] Chudzicki C and Strauch F W 2010 Phys. Rev. Lett. 105 260501
[61] Qin W, Wang C, Cao Y and Long G L 2014 Phys. Rev. A 89 062314
[62] Moore C and Russell A 2002 Lecture Notes in Computer Science (Berlin: Springer-Verlag)
[63] Košík J and Bužek V 2005 Phys. Rev. A 71 012306
[64] Krovi H and Brun T A 2006 Phys. Rev. A 73 032341
[65] Marquezino F L, Portugal R, Abal G and Donangelo R 2008 Phys. Rev. A 77 042312
[66] Shenvi N, Kempe J and Whaley K B 2003 Phys. Rev. A 67 052307
[67] Hein B and Tanner G 2009 J. Phys. A: Math. Theor. 42 085303
[68] Patel A and Rahaman Md A 2010 Phys. Rev. A 82 032330
[69] Patel A, Raghunathan K S and Rahaman Md A 2010 Phys. Rev. A 82 032331
[70] Beineke L W and Wilson R J (eds.) 1978 Selected Topics in Graph Theory (London: Academic)
[71] Cucchietti F M, Paz J P and Zurek W H 2005 Phys. Rev. A 72 052113
[72] Cai J M, Zhou Z W and Guo G C 2006 Phys. Rev. A 74 022328
[73] Paganelli S, de Pasquale F and Giampaolo S M 2002 Phys. Rev. A 66 052317
[74] Lucamarini M, Paganelli S and Mancini S 2004 Phys. Rev. A 69 062308
[75] Yuan X Z, Goan H S and Zhu K D 2007 New J. Phys. 9 219
[76] Yuan X Z, Goan H S and Zhu K D 2011 New J. Phys. 13 023018
[77] Holstein T and Primakoff H 1940 Phys. Rev. 58 1098
[78] Majlis N 2000 The Quantum Theory of Magnetism (Singapore: World Scientific)
[79] Schwinger J 1965 Quantum Theory of Angular Momentum (New York: Academic)
[80] Życzkowski K and Sommers H 2001 J. Phys. A: Math. Gen. 34 7111
[81] Li H, Li Y S, Wang S H and Long G L 2014 Commun. Theor. Phys. 61 273
[1] Enhancement of multiatom non-classical correlations and quantum state transfer in atom-cavity-fiber system
Qi-Liang He(贺启亮), Jian Sun(孙剑), Xiao-Shu Song(宋晓书), and Yong-Jun Xiao(肖勇军). Chin. Phys. B, 2021, 30(1): 010305.
[2] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[3] Some experimental schemes to identify quantum spin liquids
Yonghao Gao(高永豪), Gang Chen(陈钢). Chin. Phys. B, 2020, 29(9): 097501.
[4] Spin waves and transverse domain walls driven by spin waves: Role of damping
Zi-Xiang Zhao(赵梓翔), Peng-Bin He(贺鹏斌), Meng-Qiu Cai(蔡孟秋), Zai-Dong Li(李再东). Chin. Phys. B, 2020, 29(7): 077502.
[5] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
[6] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[7] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[8] Spin transport in antiferromagnetic insulators
Zhiyong Qiu(邱志勇), Dazhi Hou(侯达之). Chin. Phys. B, 2019, 28(8): 088504.
[9] Hydrogenated antimonene as quantum spin Hall insulator: A first-principles study
Xin He(贺欣), Ji-Biao Li(李佶彪). Chin. Phys. B, 2019, 28(3): 037301.
[10] Electronic structure of molecular beam epitaxy grown 1T'-MoTe2 film and strain effect
Xue Zhou(周雪), Zeyu Jiang(姜泽禹), Kenan Zhang(张柯楠), Wei Yao(姚维), Mingzhe Yan(颜明哲), Hongyun Zhang(张红云), Wenhui Duan(段文晖), Shuyun Zhou(周树云). Chin. Phys. B, 2019, 28(10): 107307.
[11] Voltage control of ferromagnetic resonance and spin waves
Xinger Zhao(赵星儿), Zhongqiang Hu(胡忠强), Qu Yang(杨曲), Bin Peng(彭斌), Ziyao Zhou(周子尧), Ming Liu(刘明). Chin. Phys. B, 2018, 27(9): 097505.
[12] Quantum spin Hall insulators in chemically functionalized As (110) and Sb (110) films
Xiahong Wang(王夏烘), Ping Li(李平), Zhao Ran(冉召), Weidong Luo(罗卫东). Chin. Phys. B, 2018, 27(8): 087305.
[13] Quantum state transfer via a hybrid solid-optomechanical interface
Pei Pei(裴培), He-Fei Huang(黄鹤飞), Yan-Qing Guo(郭彦青), Xing-Yuan Zhang(张兴远), Jia-Feng Dai(戴佳峰). Chin. Phys. B, 2018, 27(2): 024203.
[14] Optomechanical state transfer between two distant membranes in the presence of non-Markovian environments
Jiong Cheng(程泂), Xian-Ting Liang(梁先庭), Wen-Zhao Zhang(张闻钊), Xiangmei Duan(段香梅). Chin. Phys. B, 2018, 27(12): 120302.
[15] Recent progress on magnetic-field studies on quantum-spin-liquid candidates
Zhen Ma(马祯), Kejing Ran(冉柯静), Jinghui Wang(王靖珲), Song Bao(鲍嵩), Zhengwei Cai(蔡正蔚), Shichao Li(李世超), Jinsheng Wen(温锦生). Chin. Phys. B, 2018, 27(10): 106101.
No Suggested Reading articles found!