Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 036801    DOI: 10.1088/1674-1056/24/3/036801

Strain analysis of free-standing strained silicon-on-insulator nanomembrane

Sun Gao-Dia b, Dong Lin-Xia, Xue Zhong-Yingb, Chen Dab, Guo Qing-Leib, Mu Zhi-Qiangb
a Key Laboratory of RF Circuits and System of the Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China;
b State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
Abstract  Based on the ultra-thin strained silicon-on-insulator (sSOI) technology, by creatively using a hydrofluoric acid (HF) vapor corrosion system to dry etch the SiO2 layer, a large area of suspended strained silicon (sSi) nanomembrane with uniform strain distribution is fabricated. The strain state in the implemented nanomembrane is comprehensively analyzed by using an UV-Raman spectrometer with different laser powers. The results show that the inherent strain is preserved while there are artificial Raman shifts induced by the heat effect, which is proportional to the laser power. The suspended sSOI nanomembrane will be an important material for future novel high-performance devices.
Keywords:  dry etching      strained silicon-on-insulator      Raman spectrum      strain  
Received:  27 August 2014      Revised:  21 December 2014      Published:  05 March 2015
PACS:  68.35.Gy (Mechanical properties; surface strains)  
  61.72.uf (Ge and Si) (Strain and interface effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61376117 and 61107025) and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY13F040004).
Corresponding Authors:  Dong Lin-Xi     E-mail:

Cite this article: 

Sun Gao-Di, Dong Lin-Xi, Xue Zhong-Ying, Chen Da, Guo Qing-Lei, Mu Zhi-Qiang Strain analysis of free-standing strained silicon-on-insulator nanomembrane 2015 Chin. Phys. B 24 036801

[1] Chu M, Sun Y K, Aghoram U and Thompson S E 2009 Annu. Rev. Mater. Res. 39 203
[2] Zhou C Y, Zhang H M, Hu H Y, Zhuang Y Q, Su B, Wang B and Wang G Y 2013 Acta Phys. Sin. 62 077103 (in Chinese)
[3] Zhao G J, Yang S Y, Liu G P, Liu C B, Sang L, Gu C Y, Liu X L, Wei H Y, Zhu Q S and Wang Z G 2013 Chin. Phys. Lett. 30 098102
[4] Ismail K, Meyerson B S and Wang P J 1991 Appl. Phys. Lett. 58 2117
[5] Zhou C Y, Zhang H M, Hu H Y, Zhuang Y Q, Lü Y, Wang B and Wang G Y 2014 Acta Phys. Sin. 63 017101 (in Chinese)
[6] Ishikawa Y, Wada K, Cannon D D, Liu J F, Luan H C and Kimerling L C 2003 Appl. Phys. Lett. 82 2044
[7] Koester S J, Rim K, Chu J O, Mooney P M, Ott J A and Hargrove M A 2001 Appl. Phys. Lett. 79 2148
[8] Liu X Y, Liu W L, Ma X B, Lv S L, Song Z T and Lin C L 2010 Appl. Surf. Sci. 256 3499
[9] Xiong G, Moutanabbir O, Huang X J, Paknejad S A, Shi X W, Harder R, Reiche M and Robinson I K 2011 Appl. Phys. Lett. 99 114103
[10] Hashemi P, Canonico M, Yang J K W, Gomez L, Berggren K K and Hoyt J L 2008 ECS Transactions 16 57
[11] Hart T R, Aggarwal R L and Lax B 1970 Phys. Rev. B 1 638
[12] Doerk G S, Carraro C and Maboudian R 2010 ACS Nano 4 4908
[13] Moritz H D, Talbott J A, Chandra M, Tseronis J A and Jafri I 2002 U.S. Patent 6334266B1 [2002-01-01]
[14] Yuan H C, Wang G, Ma Z, Roberts M M, Savage D E and Lagally M G 2007 Semicond. Sci. Technol. 22 S72
[15] Mu Z Q, Xue Z Y, Wei X, Chen D, Zhang M, Di Z F and Wang X 2014 Thin Solid Films 557 101
[16] Dombrowski K F, Wolf I D and Dietrich B 1999 Appl. Phys. Lett. 75 2450
[17] Tsang J C, Mooney P M, Dacol F and Chu J O 1994 J. Appl. Phys. 75 8098
[18] Langdo T A, Currie M T, Lochtefeld A, Hammond R, Carlin J A, Erdtmann M, Braithwaite G, Yang V K, Vineis C J, Badawi H and Bulsara M T 2003 Appl. Phys. Lett. 82 4256
[19] Süess M J, Minamisawa R A, Geiger R, Bourdelle K K, Sigg H and Spolenak R 2014 Nano Lett. 14 1249
[20] Picu R C, Borca T T and Pavel M C 2003 J. Appl. Phys. 93 3535
[21] Liu W and Asheghi M 2004 Appl. Phys. Lett. 84 3819.
[22] Li D Y, Wu Y Y, Kin P, Shi L, Yang P D and Majumdar A 2003 Appl. Phys. Lett. 83 2934
[1] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[2] Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica
Hanqi Gong(龚菡琪), Chonghai Qi(齐崇海), Junwei Yang(杨俊伟), Jige Chen(陈济舸), Xiaoling Lei(雷晓玲), Liang Zhao(赵亮), and Chunlei Wang(王春雷). Chin. Phys. B, 2021, 30(1): 010503.
[3] High temperature strain glass in Ti-Au and Ti-Pt based shape memory alloys
Shuai Ren(任帅), Chang Liu(刘畅), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2021, 30(1): 018101.
[4] Stretchable electromagnetic interference shielding and antenna for wireless strain sensing by anisotropic micron-steel-wire based conductive elastomers
Xiaoyu Hu(胡晓宇), Linlin Mou(牟琳琳), and Zunfeng Liu(刘遵峰). Chin. Phys. B, 2021, 30(1): 018401.
[5] Protein-protein docking with interface residue restraints
Hao Li(李豪) and Sheng-You Huang(黄胜友). Chin. Phys. B, 2021, 30(1): 018703.
[6] Evolution of electrical and magnetotransport properties with lattice strain in La0.7Sr0.3MnO3 film
Zhi-Bin Ling(令志斌), Qing-Ye Zhang(张庆业), Cheng-Peng Yang(杨成鹏), Xiao-Tian Li(李晓天), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜), Huai-Wen Yang(杨怀文), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 096802.
[7] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[8] Modulation of carrier lifetime in MoS2 monolayer by uniaxial strain
Hao Hong(洪浩), Yang Cheng(程阳), Chunchun Wu(吴春春), Chen Huang(黄琛), Can Liu(刘灿), Wentao Yu(于文韬), Xu Zhou(周旭), Chaojie Ma(马超杰), Jinhuan Wang(王金焕), Zhihong Zhang(张智宏), Yun Zhao(赵芸), Jie Xiong(熊杰), Kaihui Liu(刘开辉). Chin. Phys. B, 2020, 29(7): 077201.
[9] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[10] Uncovering the internal structure of five-fold twinned nanowires through 3D electron diffraction mapping
Xin Fu(付新). Chin. Phys. B, 2020, 29(6): 068101.
[11] Constraint dependence of average potential energy of a passive particle in an active bath
Simin Ye(叶思敏), Peng Liu(刘鹏), Zixuan Wei(魏子轩), Fangfu Ye(叶方富), Mingcheng Yang(杨明成), Ke Chen(陈科). Chin. Phys. B, 2020, 29(5): 058201.
[12] Hunting problems of multi-quadrotor systems via bearing-based hybrid protocols with hierarchical network
Zhen Xu(徐振), Xin-Zhi Liu(刘新芝), Qing-Wei Chen(陈庆伟), Zi-Xing Wu(吴梓杏). Chin. Phys. B, 2020, 29(5): 050701.
[13] Ab initio calculations on oxygen vacancy defects in strained amorphous silica
Bao-Hua Zhou(周保花), Fu-Jie Zhang(张福杰), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(4): 047103.
[14] First-principles investigation on ideal strength of B2 NiAl and NiTi alloys
Chun-Yao Zhang(张春尧), Fu-Yang Tian(田付阳), Xiao-Dong Ni(倪晓东). Chin. Phys. B, 2020, 29(3): 036201.
[15] Molecular dynamics simulation of atomic hydrogen diffusion in strained amorphous silica
Fu-Jie Zhang(张福杰), Bao-Hua Zhou(周保花), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(2): 027101.
No Suggested Reading articles found!