Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 027901    DOI: 10.1088/1674-1056/24/2/027901

Temperature effect on the electronic structure of Nb:SrTiO3 (100) surface

Zhang Shuang-Honga b, Wang Jia-Oub, Qian Hai-Jieb, Wu Ruib, Zhang Nianb, Lei Taob, Liu Chenb, Kurash Ibrahimb
a School of Physics and Materials Science, Anhui University, Hefei 230039, China;
b Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Abstract  The effect of temperature on the electronic structure of Nb-doped SrTiO3 (100) surface is investigated by high-resolution synchrotron radiation photoemission spectroscopy. According to the x-ray photoemission spectroscopy (XPS) results, at an annealing temperature of less than 700 ℃, the adsorbed carbon and hydroxyl on the STO surface could be removed, to expose the fresh intrinsic surface with a constant ratio of Ti/O. It is obvious that the STO would be doped by Ca+ impurities of bulks and O vacancies in the surface after annealing at 920 ℃ for one hour.
Keywords:  strontium titanate      ultrahigh vacuum annealing      synchrotron radiation photoemission spectroscopy  
Received:  09 June 2014      Revised:  30 September 2014      Published:  05 February 2015
PACS:  79.60.-i (Photoemission and photoelectron spectra)  
  73.20.At (Surface states, band structure, electron density of states)  
  81.65.Cf (Surface cleaning, etching, patterning)  
Fund: Project supported by the Funds from the Chinese Academy of Sciences (Grant No. 1G2009312311750101) and the National Natural Science Foundation of China (Grant No. 11375228).
Corresponding Authors:  Wang Jia-Ou     E-mail:

Cite this article: 

Zhang Shuang-Hong, Wang Jia-Ou, Qian Hai-Jie, Wu Rui, Zhang Nian, Lei Tao, Liu Chen, Kurash Ibrahim Temperature effect on the electronic structure of Nb:SrTiO3 (100) surface 2015 Chin. Phys. B 24 027901

[1] Habermeier H U 2007 Materials Today 10 34
[2] Kan D, Terashima T, Kanda R, Masuno A, Tanaka K, Chu S, Kan H, Ishizumi A, Kanemitsu Y, Shimakawa Y and Takano M 2005 Nat. Mater. 4 816
[3] Konta R, Ishii T, Kato H and Kudo A 2004 J. Phys. Chem. B 108 8992
[4] Liang Y and Bonnell D A 1993 Surf. Sci. Lett. 285 L510
[5] Zhou N, Zhao K, Liu H, Lu Z, Zhao H, Tian L, Liu W and Zhao S 2009 J. Appl. Phys. 105 083110
[6] Tabata H, Murata O, Kawai T and Kawai S 1990 Appl. Phys. Lett. 56 1576
[7] Bai H L, Liu G L, He S M, Yan S S, Zhu D P, Guo H Y, Ji Z W, Yang F F, Chen Y X and Mei L M 2012 Chin. Phys. B 21 057801
[8] Xie Y W and Hwang H Y 2013 Chin. Phys. B 22 127301
[9] Zhang T, Ding L H and Zhang W F 2012 Chin. Phys. B 21 047301
[10] Bickel N, Schmidt G, Heinz K and Müller K 1989 Phys. Rev. Lett. 62 2009
[11] Zhao L, Zhang W T, Liu H Y, Meng J Q, Liu G D, Lu W, Dong X L and Zhou X J 2010 Chin. Phys. Lett. 27 87401
[12] Choi W S, Jeong D W, Seo S S A, Lee Y S, Kim T H, Jang S Y, Lee H N and Myung-Whun K 2011 Phys. Rev. B 83 195113
[13] Kim S S and Je J H 2001 Ferroelectrics 259 9
[14] Posadas A, Berg M, Seo H, de Lozanne A, Demkov A A, Smith D J, Kirk A P, Zhernokletov D and Wallace R M 2011 Appl. Phys. Lett. 98 053104
[15] Kim B M, Brintlinger T, Cobas E, Fuhrer M S, Zheng H, Yu Z, Droopad R, Ramdani J and Eisenbeiser K 2004 Appl. Phys. Lett. 84 1946
[16] Liang Y, Kulik J, Eschrich T C, Droopad R, Yu Z and Maniar P 2004 Appl. Phys. Lett. 85 1217
[17] Ohtomo A and Hwang H Y 2006 Nature 441 120
[18] Aiura Y, Hase I, Bando H, Yasue T, Saitoh T and Dessau D S 2002 Surf. Sci. 515 61
[19] Jiang Q D and Zegenhagen J 1999 Surf. Sci. 425 343
[20] Meevasana W, King P D C, He R H, Mo S K, Hashimoto M, Tamai A, Songsiriritthigul P, Baumberger F and Shen Z X 2011 Nat. Mater. 10 114
[21] Polli A D, Wagner T and Rühle M 1999 Surf. Sci. 429 237
[22] Santander-Syro A F, Copie O, Kondo T, Fortuna F, Pailhes S, Weht R, Qiu X G, Bertran F, Nicolaou A, Taleb-Ibrahimi A, Le Fevre P, Herranz G, Bibes M, Reyren N, Apertet Y, Lecoeur P, Barthelemy A and Rozenberg M J 2011 Nature 469 189
[23] Shiraki S, Nantoh M, Katano S and Kawai M 2010 Appl. Phys. Lett. 96 231901
[24] Azad S, Engelhard M H and Wang L Q 2005 J. Phys. Chem. B 109 10327
[25] Kawasaki M, Ohtomo A, Arakane T, Takahashi K, Yoshimoto M and Koinuma H 1996 Appl. Surf. Sci. 107 102
[26] Kawasaki M, Takahashi K, Maeda T, Tsuchiya R, Shinohara M, Ishiyama O, Yonezawa T, Yoshimoto M and Koinuma H 1994 Science 266 1540
[27] Yamamoto Y, Nakajima K, Ohsawa T, Matsumoto Y and Koinuma H 2005 Jpn. J. Appl. Phys. 44 L511
[28] Henrich V E, Dresselhaus G and Zeiger H J 1978 Phys. Rev. B 17 4908
[29] Castell M R 2002 Surf. Sci. 505 1
[30] Jiang Q D and Zegenhagen J 1995 Surf. Sci. 338 L882
[31] Zhang Q W, Zhai J W and Yue Z X 2013 Acta Phys. Sin. 62 237702 (in Chinese)
[32] Adachi Y, Kohiki S, Wagatsuma K and Oku M 1999 Appl. Surf. Sci. 143 272
[33] Hanzig J, Abendroth B, Hanzig F, Stöcker H, Strohmeyer R, Meyer D C, Lindner S, Grobosch M, Knupfer M, Himcinschi C, Muühle U and Munnik F 2011 J. Appl. Phys. 110 064107
[34] Schafranek R, Payan S, Maglione M and Klein A 2008 Phys. Rev. B 77 195310
[35] Deak D S 2007 Mater. Sci. Technol. 23 127
[36] Morikawa K, Mizokawa T, Fujimori A, Taguchi Y and Tokura Y 1996 Phys. Rev. B 54 8446
[37] Marshall M S J, Newell D T, Payne D J, Egdell R G and Castell M R 2011 Phys. Rev. B 83 035410
[38] Brown G E, Kendelewicz T, Carrier X and Doyle C S 1999 Surf. Rev. Lett. 06 1247
[39] Tseng S H, Palathinkal T J and Tai N H 2010 Carbon 48 2159
[40] Kobayashi D, Kumigashira H, Oshima M, Ohnishi T, Lippmaa M, Ono K, Kawasaki M and Koinuma H 2004 J. Appl. Phys. 96 7183
[41] Kim J, Chung J and Oh S J 2005 Phys. Rev. B 71 121406
[42] Argirusis C, Voigts F, Datta P, Grosse-Brauckmann J and Maus-Friedrichs W 2009 Phys. Chem. Chem. Phys. 11 3152
[43] Andersen J E T and Moller P J 1990 Appl. Phys. Lett. 56 1847
[44] Herger R, Willmott P R, Bunk O, Schlepütz C M, Patterson B D, Delley B, Shneerson V L, Lyman P F and Saldin D K 2007 Phys. Rev. B 76 195435
[45] Rao C N R and Sarma D D 1982 J. Solid State Chem. 45 14
[46] Cai H L, Wu X S and Gao J 2009 Chem. Phys. Lett. 467 313
[47] Nagarkar P V, Searson P C and Gealy F D 1991 J. Appl. Phys. 69 459
[48] Martín González M S, Aguirre M H, Morán E, Alario-Franco M Á, Perez-Dieste V, Avila J and Asensio M C 2000 Solid State Sci. 2 519
[49] Nishimura T, Ikeda A, Namba H, Morishita T and Kido Y 1999 Surf. Sci. 421 273
[1] Josephson effect in the strontium titanate/lanthanum aluminate junction
Xing Yang(阳星), Jie Chen(陈杰), Yabin Yu(余亚斌), Quanhui Liu(刘全慧). Chin. Phys. B, 2019, 28(9): 097401.
[2] Chemical structure of grain-boundary layer in SrTiO3 and its segregation-induced transition: A continuum interface approach
Hui Gu(顾辉). Chin. Phys. B, 2018, 27(6): 060503.
[3] Enhancement of thermoelectric properties of SrTiO3/LaNb-SrTiO3 composite by different doping levels
Ke-Xian Wang(王柯鲜), Jun Wang(王俊), Yan Li(李艳), Tao Zou(邹涛), Xiao-Huan Wang(王晓欢), Jian-Bo Li(李建波), Zheng Cao(曹正), Wen-Jing Shi(师文静), Xinba Yaer(新巴雅尔). Chin. Phys. B, 2018, 27(4): 048401.
[4] Morphological and electrical properties of SrTiO3/TiO2/SrTiO3 sandwich structures prepared by plasma sputtering
Saqib Jabbar, Riaz Ahmad, Paul K Chu. Chin. Phys. B, 2017, 26(1): 010702.
[5] Ultrahigh frequency tunability of aperture-coupled microstrip antenna via electric-field tunable BST
Du Hong-Lei, Xue Qian, Gao Xiao-Yang, Yao Feng-Rui, Lu Shi-Yang, Wang Ye-Long, Liu Chun-Heng, Zhang Yong-Cheng, Lü Yue-Guang, Li Shan-Dong. Chin. Phys. B, 2015, 24(12): 127704.
[6] Tuning the electrons at the LaAlO3/SrTiO3 interface:From growth to beyond growth
Xie Yan-Wu, Hwang Harold Y. Chin. Phys. B, 2013, 22(12): 127301.
No Suggested Reading articles found!