Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 026101    DOI: 10.1088/1674-1056/24/2/026101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Quartic coupling and its effect on wetting behaviors in nematic liquid crystals

Zeng Ming-Yinga b, Holger Merlitza, Wu Chen-Xua
a Department of Physics and ITPA, Xiamen University, Xiamen 361005, China;
b College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
Abstract  Based on the fact that rubbed groove patterns also affect the anchoring of liquid crystals at substrates, a quartic coupling is included in constructing the surface energy for a liquid crystal cell. The phase diagram and the wetting behaviors of the liquid crystal cell, bounded by surfactant-laden interfaces in a magnetic field perpendicular to the substrate are discussed by taking the quartic coupling into account. The nematic order increases at the surface while it decreases in the bulk as a result of the introduction of quartic substrate-liquid crystal coupling, indicating that the groove anchoring makes the liquid crystal molecules align more orderly near the substrate than away from it. This causes a different wetting behavior: complete wetting.
Keywords:  quartic coupling      surface anchoring energy      phase transition      wetting behavior     
Received:  02 October 2014      Published:  05 February 2015
PACS:  61.30.Hn (Surface phenomena: alignment, anchoring, anchoring transitions, surface-induced layering, surface-induced ordering, wetting, prewetting transitions, and wetting transitions)  
  61.30.Gd (Orientational order of liquid crystals; electric and magnetic field effects on order)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11374243).
Corresponding Authors:  Wu Chen-Xu     E-mail:  cxwu@xmu.edu.cn

Cite this article: 

Zeng Ming-Ying, Holger Merlitz, Wu Chen-Xu Quartic coupling and its effect on wetting behaviors in nematic liquid crystals 2015 Chin. Phys. B 24 026101

[1] Sheng P and Wojtowicz P J 1976 Phys. Rev. A 14 1883
[2] Guan R H and Sun Y B 2006 Chin. Phys. 15 1041
[3] de Gennes P G and Prost J 1993 The Physics of Liquid Crystal, 2nd edn. (Oxford: Oxford Science Publications)
[4] Noonan P S, Shavit A A, Acharya B R and Schwartz D K 2011 Appl. Mater. Interfaces 3 4374
[5] Sohn E H, Lee M and Song K 2013 Macromol. Res. 21 234
[6] Jérôme B 1991 Rep. Prog. Phys. 54 391
[7] Crawford G P, Ondris-Crawford R J, Doane J W and Žumer S 1996 Phys. Rev. E 53 3647
[8] Rapini A and Papoular M 1969 J. Phys. (Paris) Colloq. 30 C4-54
[9] Nobili M and Durand G 1992 Phys. Rev. A 46 R6174
[10] Zhao W, Wu C X and Iwamoto M 2000 Phys. Rev. E 62 R1481
[11] Sugimura A, Luckhurst G R and Ou-Yang Z C 1995 Phys. Rev. E 52 681
[12] Fukuda J I, Yoneya M and Yokoyama H 2007 Phys. Rev. Lett. 98 187803
[13] Fukuda J I, Gway J S, Yoneya M and Yokoyama H 2008 Phys. Rev. E 77 011702
[14] Gway J S, Fukuda J I, Yoneya M and Yokoyama H 2007 Appl. Phys. Lett. 91 073504
[15] Gway J S, Kim J H, Yoneya M and Yokoyama H 2008 Appl. Phys. Lett. 92 153110
[16] Gway J S, Kwon J H, Oh-e M, Niitsuma J, Yoneya M and Yokoyama H 2009 Appl. Phys. Lett. 95 103101
[17] Choi Y, Yokoyama H and Gway J S 2013 Opt. Express 21 12136
[18] Kadivar E 2008 Phys. Rev. E 78 031706
[19] Sheng P 1982 Phys. Rev. A 26 1610
[20] Zeng M Y, Cui W, Tan X Q and Wu C X 2011 Chin. Phys. Lett. 28 066103
[21] Ma H, Onnagawa H, Sugimori S and Toriymama K 2010 Chin. Phys. B 19 076104
[1] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[2] Theoretical study on martensitic-type transformation path from rutile phase to α-PbO2 phase of TiO2
Wen-Xuan Wang(王文轩), Zhen-Yi Jiang(姜振益), Yan-Ming Lin(林彦明), Ji-Ming Zheng(郑继明), Zhi-Yong Zhang(张志勇). Chin. Phys. B, 2020, 29(7): 076101.
[3] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[4] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[5] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[6] Ab initio studies on ammonium iodine under high pressure
Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(5): 053104.
[7] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[8] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[9] Growth and structural characteristics of metastable β-In2Se3 thin films on H-terminated Si(111) substrates by molecular beam epitaxy
Yi-Fan Shen(沈逸凡), Xi-Bo Yin(尹锡波), Chao-Fan Xu(徐超凡), Jing He(贺靖), Jun-Ye Li(李俊烨), Han-Dong Li(李含冬), Xiao-Hong Zhu(朱小红), Xiao-Bin Niu(牛晓滨). Chin. Phys. B, 2020, 29(5): 056402.
[10] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
[11] Acoustic topological phase transition induced by band inversion of high-order compound modes and robust pseudospin-dependent transport
Yan Li(李妍), Yi-Nuo Liu(刘一诺), Xia Zhang(张霞). Chin. Phys. B, 2020, 29(10): 106301.
[12] Distribution of a polymer chain between two interconnected spherical cavities
Chao Wang(王超), Ying-Cai Chen(陈英才), Shuang Zhang(张爽), Hang-Kai Qi(齐航凯), Meng-Bo Luo(罗孟波). Chin. Phys. B, 2020, 29(10): 108201.
[13] Two-step high-pressure high-temperature synthesis of nanodiamonds from naphthalene
Tong Liu(刘童), Xi-Gui Yang(杨西贵), Zhen Li(李振), Yan-Wei Hu(胡宴伟), Chao-Fan Lv(吕超凡), Wen-Bo Zhao(赵文博), Jin-Hao Zang(臧金浩), Chong-Xin Shan(单崇新). Chin. Phys. B, 2020, 29(10): 108102.
[14] Phase transition of DNA compaction in confined space: Effects of macromolecular crowding are dominant
Erkun Chen(陈尔坤), Yangtao Fan(范洋涛), Guangju Zhao(赵光菊), Zongliang Mao(毛宗良), Haiping Zhou(周海平), Yanhui Liu(刘艳辉). Chin. Phys. B, 2020, 29(1): 018701.
[15] Structural transitions in NaNH2 via recrystallization under high pressure
Yanping Huang(黄艳萍), Xiaoli Haung(黄晓丽), Xin Wang(王鑫), Wenting Zhang(张文亭), Di Zhou(周迪), Qiang Zhou(周强), Bingbing Liu(刘冰冰), Tian Cui(崔田). Chin. Phys. B, 2019, 28(9): 096402.
No Suggested Reading articles found!