Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 119401    DOI: 10.1088/1674-1056/24/11/119401
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev  

Fin width and height dependence of bipolar amplification in bulk FinFETs submitted to heavy ion irradiation

Yu Jun-Ting (于俊庭)a, Chen Shu-Ming (陈书明)a b, Chen Jian-Jun (陈建军)a, Huang Peng-Cheng (黄鹏程)a
a College of Computer, National University of Defense Technology, Changsha 410073, China;
b National Laboratory for Parallel and Distributed Processing, National University of Defense Technology, Changsha 410073, China
Abstract  FinFET technologies are becoming the mainstream process as technology scales down. Based on a 28-nm bulk p-FinFET device, we have investigated the fin width and height dependence of bipolar amplification for heavy-ion-irradiated FinFETs by 3D TCAD numerical simulation. Simulation results show that due to a well bipolar conduction mechanism rather than a channel (fin) conduction path, the transistors with narrower fins exhibit a diminished bipolar amplification effect, while the fin height presents a trivial effect on the bipolar amplification and charge collection. The results also indicate that the single event transient (SET) pulse width can be mitigated about 35% at least by optimizing the ratio of fin width and height, which can provide guidance for radiation-hardened applications in bulk FinFET technology.
Keywords:  fin width and height      bipolar amplification      single event transient      bulk FinFET  
Received:  09 March 2015      Revised:  23 June 2015      Accepted manuscript online: 
PACS:  94.05.Dd (Radiation processes)  
  85.30.Tv (Field effect devices)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the National Natural Science of China (Grant No. 61376109).
Corresponding Authors:  Yu Jun-Ting     E-mail:  yjting_nudt@163.com

Cite this article: 

Yu Jun-Ting (于俊庭), Chen Shu-Ming (陈书明), Chen Jian-Jun (陈建军), Huang Peng-Cheng (黄鹏程) Fin width and height dependence of bipolar amplification in bulk FinFETs submitted to heavy ion irradiation 2015 Chin. Phys. B 24 119401

[1] Colinge J P;2008 FinFETs and Other Multi-Gate Transistors (New York: Springer) p. 52
[2] Fossum J G and Trivedl V P;2013 Fundamentals of Ultra-Thin-Body MOSFETs and FinFETs (New York: Cambridge University Press) p. 33
[3] http://www.eetimes.com/electronics-news/4215729/Intel-to-use-tri-gate-transistors-at-22-nm.
[4] Rathod S S, Saxena A K and Dasgupta S;2011 IEEE Trans. Elec. Dev. 58 3630
[5] Ball D R, Alles M L, Schrimpf R D and Cristoloveanu S;2010 Proceedings of IEEE International SOI Conference, October 11-14, 2010, San Diego, CA, USA, p. 1
[6] Liu Z, Chen S M, Chen J J, Qin J R and Liu R R;2012 Chin. Phys. B 21 099401
[7] Chen J J, Chen S M, Liang B and Deng K F;2012 Chin. Phys. B 21 016103
[8] He Y B and Chen S M;2014 Chin. Phys. B 23 079401
[9] Huang P C, Chen S M, Liang Z F, Chen J J, Hu C M and He Y B;2014 Chin. Sci. Bull. 59 2850
[10] Qin J R, Chen S M and Chen J J;2012 Sci. Chin. Tech. Sci. 55 1576
[11] Mamouni F E, Zhang E X, Ball D R, Sierwaski B, King M P, Schrimpf R D, Reed R A, Alles M L, Fleetwood D M, Linten D, Simoen E and Vizkelethy G;2012 IEEE Trans. Nucl. Sci. 59 2674
[12] Castellani K, Munteanu D, Autran J L, Cavrois V F, Paillet P and Baggio J;2006 IEEE Trans. Nucl. Sci. 53 3265
[13] Munteanu D, Autran J L, Cavrois V F, Paillet P, Baggio J and Castellani K;2007 IEEE Trans. Nucl. Sci. 54 994
[14] Munteanu D and Autran J L;2008 IEEE Trans. Nucl. Sci. 55 1854
[15] Munteanu D and Autran J L;2009 IEEE Trans. Nucl. Sci. 56 2083
[16] Munteanu D and Autran J L;2012 IEEE Trans. Nucl. Sci. 59 3249
[17] Villacorta H, Segura J, Bota S and Champac V;2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS), August 3-6, 2014, College Station, TX, USA, p. 671
[18] Simoen E, Gaillardin M, Paillet P, Reed R A, Schrimpf R D, Alles M L, Mamouni F E, Fleetwood D M, Griffoni A and Claeys C;2013 IEEE Trans. Nucl. Sci. 60 1970
[19] Cavrois V F, Vizkelethy G, Paillet P, Torres A, Schwank J R, Shaneyfelt M R, Baggio J, Pontcharra J P and Tosti L;2004 IEEE Trans. Nucl. Sci. 51 3255
[20] Neamen D A 2003 Semiconductor Physics and Devices Basic Principles, 3th edn. (Beijing: Publishing House of Electronics Industry) p. 263 (in Chinese)
[21] Mamouni F E, Zhang E X, Pate N D, Hooten N, Schrimpf R D, Reed R A, Galloway K F, McMorrow D, Warner J, Simoen E, Claeys C, Griffoni A, Linten D and Vizkelethy G;2011 IEEE Trans. Nucl. Sci. 58 2563
[1] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[2] Analysis of multiple cell upset sensitivity in bulk CMOS SRAM after neutron irradiation
Xiaoyu Pan(潘霄宇), Hongxia Guo(郭红霞), Yinhong Luo(罗尹虹), Fengqi Zhang(张凤祁), Lili Ding(丁李利). Chin. Phys. B, 2018, 27(3): 038501.
[3] Effect of supply voltage and body-biasing on single-event transient pulse quenching in bulk fin field-effect-transistor process
Jun-Ting Yu(于俊庭), Shu-Ming Chen(陈书明), Jian-Jun Chen(陈建军), Peng-Cheng Huang(黄鹏程), Rui-Qiang Song(宋睿强). Chin. Phys. B, 2016, 25(4): 049401.
[4] Effect of body biasing on single-event induced charge collection in deep N-well technology
Ding Yi (丁一), Hu Jian-Guo (胡建国), Qin Jun-Rui (秦军瑞), Tan Hong-Zhou (谭洪舟). Chin. Phys. B, 2015, 24(7): 079401.
[5] Estimation of pulsed laser-induced single event transient in a partially depleted silicon-on-insulator 0.18-μm MOSFET
Bi Jin-Shun (毕津顺), Zeng Chuan-Bin (曾传滨), Gao Lin-Chun (高林春), Liu Gang (刘刚), Luo Jia-Jun (罗家俊), Han Zheng-Sheng (韩郑生). Chin. Phys. B, 2014, 23(8): 088505.
[6] Experimental verification of the parasitic bipolar amplification effect in PMOS single event transients
He Yi-Bai (何益百), Chen Shu-Ming (陈书明). Chin. Phys. B, 2014, 23(7): 079401.
[7] A single-event transient induced by a pulsed laser in a silicon-germanium heterojunction bipolar transistor
Sun Ya-Bin (孙亚宾), Fu Jun (付军), Xu Jun (许军), Wang Yu-Dong (王玉东), Zhou Wei (周卫), Zhang Wei (张伟), Cui Jie (崔杰), Li Gao-Qing (李高庆), Liu Zhi-Hong (刘志弘), Yu Yong-Tao (余永涛), Ma Ying-Qi (马英起), Feng Guo-Qiang (封国强), Han Jian-Wei (韩建伟). Chin. Phys. B, 2013, 22(5): 056103.
[8] Dual role of multiple-transistor charge sharing collection in single-event transient
Guo Yang (郭阳), Chen Jian-Jun (陈建军), He Yi-Bai (何益百), Liang Bin (梁斌), Liu Bi-Wei (刘必慰). Chin. Phys. B, 2013, 22(4): 046103.
[9] Temperature dependence of single event transient in 90-nm CMOS dual-well and triple-well NMOSFETs
Li Da-Wei (李达维), Qin Jun-Rui (秦军瑞), Chen Shu-Ming (陈书明). Chin. Phys. B, 2013, 22(2): 029401.
[10] Parasitic bipolar amplification in single event transient and its temperature dependence
Liu Zheng (刘征), Chen Shu-Ming (陈书明), Chen Jian-Jun (陈建军), Qin Jun-Rui (秦军瑞), Liu Rong-Rong (刘蓉容). Chin. Phys. B, 2012, 21(9): 099401.
[11] Temperature and drain bias dependence of single event transient in 25-nm FinFET technology
Qin Jun-Rui (秦军瑞), Chen Shu-Ming (陈书明), Li Da-Wei (李达维), Liang Bin (梁斌), Liu Bi-Wei (刘必慰 ). Chin. Phys. B, 2012, 21(8): 089401.
[12] New insight into the parasitic bipolar amplification effect in single event transient production
Chen Jian-Jun(陈建军), Chen Shu-Ming(陈书明), Liang Bin(梁斌), and Deng Ke-Feng (邓科峰) . Chin. Phys. B, 2012, 21(1): 016103.
[13] Temperature dependence of the P-hit single event transient pulse width in a three-transistor inverter chain
Chen Shu-Ming(陈书明) and Chen Jian-Jun(陈建军) . Chin. Phys. B, 2012, 21(1): 016104.
[14] The modulation effect of substrate doping on multi-node charge collection and single-event transient propagation in 90-nm bulk complementary metal-oxide semiconductor technology
Qin Jun-Rui(秦军瑞), Chen Shu-Ming(陈书明), Liu Bi-Wei(刘必慰), Liu Zheng(刘征), Liang Bin(梁斌), and Du Yan-Kang(杜延康) . Chin. Phys. B, 2011, 20(12): 129401.
No Suggested Reading articles found!